Karpathy identifies the AI community's 2010s focus on reinforcement learning in games (like Atari) as a misstep. These environments were too sparse and disconnected from real-world knowledge work. Progress required first building powerful representations through large language models, a step that was skipped in early attempts to create agents.

Related Insights

AI models show impressive performance on evaluation benchmarks but underwhelm in real-world applications. This gap exists because researchers, focused on evals, create reinforcement learning (RL) environments that mirror test tasks. This leads to narrow intelligence that doesn't generalize, a form of human-driven reward hacking.

Language is just one 'keyhole' into intelligence. True artificial general intelligence (AGI) requires 'world modeling'—a spatial intelligence that understands geometry, physics, and actions. This capability to represent and interact with the state of the world is the next critical phase of AI development beyond current language models.

Pre-training on internet text data is hitting a wall. The next major advancements will come from reinforcement learning (RL), where models learn by interacting with simulated environments (like games or fake e-commerce sites). This post-training phase is in its infancy but will soon consume the majority of compute.

Training AI agents to execute multi-step business workflows demands a new data paradigm. Companies create reinforcement learning (RL) environments—mini world models of business processes—where agents learn by attempting tasks, a more advanced method than simple prompt-completion training (SFT/RLHF).

Beyond supervised fine-tuning (SFT) and human feedback (RLHF), reinforcement learning (RL) in simulated environments is the next evolution. These "playgrounds" teach models to handle messy, multi-step, real-world tasks where current models often fail catastrophically.

Karpathy criticizes standard reinforcement learning as a noisy and inefficient process. It assigns credit or blame to an entire sequence of actions based on a single outcome bit (success/failure). This is like "sucking supervision through a straw," as it fails to identify which specific steps in a successful trajectory were actually correct.

Karpathy argues against the hype of an imminent "year of agents." He believes that while impressive, current AI agents have significant cognitive deficits. Achieving the reliability of a human intern will require a decade of sustained research to solve fundamental problems like continual learning and multimodality.

Biological evolution used meta-reinforcement learning to create agents that could then perform imitation learning. The current AI paradigm is inverted: it starts with pure imitation learners (base LLMs) and then attempts to graft reinforcement learning on top to create coherent agency and goals. The success of this biologically 'backwards' approach remains an open question.

As reinforcement learning (RL) techniques mature, the core challenge shifts from the algorithm to the problem definition. The competitive moat for AI companies will be their ability to create high-fidelity environments and benchmarks that accurately represent complex, real-world tasks, effectively teaching the AI what matters.

Karpathy identifies two missing components for multi-agent AI systems. First, they lack "culture"—the ability to create and share a growing body of knowledge for their own use, like writing books for other AIs. Second, they lack "self-play," the competitive dynamic seen in AlphaGo that drives rapid improvement.

AI's Early Focus on Game-Playing Reinforcement Learning Was a Foundational Misstep | RiffOn