Pre-training on internet text data is hitting a wall. The next major advancements will come from reinforcement learning (RL), where models learn by interacting with simulated environments (like games or fake e-commerce sites). This post-training phase is in its infancy but will soon consume the majority of compute.

Related Insights

Algorithms like GRPO are powerful but require parallel rollouts in a reproducible environment. Building and maintaining these high-fidelity sandboxes, complete with realistic data and failure modes, is the hardest part of implementing RL today and a significant barrier for most companies.

The era of advancing AI simply by scaling pre-training is ending due to data limits. The field is re-entering a research-heavy phase focused on novel, more efficient training paradigms beyond just adding more compute to existing recipes. The bottleneck is shifting from resources back to ideas.

In domains like coding and math where correctness is automatically verifiable, AI can move beyond imitating humans (RLHF). Using pure reinforcement learning, or "experiential learning," models learn via self-play and can discover novel, superhuman strategies similar to AlphaGo's Move 37.

Training AI agents to execute multi-step business workflows demands a new data paradigm. Companies create reinforcement learning (RL) environments—mini world models of business processes—where agents learn by attempting tasks, a more advanced method than simple prompt-completion training (SFT/RLHF).

AI labs like Anthropic find that mid-tier models can be trained with reinforcement learning to outperform their largest, most expensive models in just a few months, accelerating the pace of capability improvements.

Beyond supervised fine-tuning (SFT) and human feedback (RLHF), reinforcement learning (RL) in simulated environments is the next evolution. These "playgrounds" teach models to handle messy, multi-step, real-world tasks where current models often fail catastrophically.

Companies like OpenAI and Anthropic are spending billions creating simulated enterprise apps (RL gyms) where human experts train AI models on complex tasks. This has created a new, rapidly growing "AI trainer" job category, but its ultimate purpose is to automate those same expert roles.

AI progress was expected to stall in 2024-2025 due to hardware limitations on pre-training scaling laws. However, breakthroughs in post-training techniques like reasoning and test-time compute provided a new vector for improvement, bridging the gap until next-generation chips like NVIDIA's Blackwell arrived.

The transition from supervised learning (copying internet text) to reinforcement learning (rewarding a model for achieving a goal) marks a fundamental breakthrough. This method, used in Anthropic's Opus 3 model, allows AI to develop novel problem-solving capabilities beyond simple data emulation.

As reinforcement learning (RL) techniques mature, the core challenge shifts from the algorithm to the problem definition. The competitive moat for AI companies will be their ability to create high-fidelity environments and benchmarks that accurately represent complex, real-world tasks, effectively teaching the AI what matters.

AI's Next Leap Is Reinforcement Learning in Simulated Environments | RiffOn