Biological evolution used meta-reinforcement learning to create agents that could then perform imitation learning. The current AI paradigm is inverted: it starts with pure imitation learners (base LLMs) and then attempts to graft reinforcement learning on top to create coherent agency and goals. The success of this biologically 'backwards' approach remains an open question.
OpenAI co-founder Ilya Sutskever suggests the path to AGI is not creating a pre-trained, all-knowing model, but an AI that can learn any task as effectively as a human. This reframes the challenge from knowledge transfer to creating a universal learning algorithm, impacting how such systems would be deployed.
Reinforcement learning incentivizes AIs to find the right answer, not just mimic human text. This leads to them developing their own internal "dialect" for reasoning—a chain of thought that is effective but increasingly incomprehensible and alien to human observers.
The current limitation of LLMs is their stateless nature; they reset with each new chat. The next major advancement will be models that can learn from interactions and accumulate skills over time, evolving from a static tool into a continuously improving digital colleague.
Pre-training on internet text data is hitting a wall. The next major advancements will come from reinforcement learning (RL), where models learn by interacting with simulated environments (like games or fake e-commerce sites). This post-training phase is in its infancy but will soon consume the majority of compute.
Training AI agents to execute multi-step business workflows demands a new data paradigm. Companies create reinforcement learning (RL) environments—mini world models of business processes—where agents learn by attempting tasks, a more advanced method than simple prompt-completion training (SFT/RLHF).
While language models are becoming incrementally better at conversation, the next significant leap in AI is defined by multimodal understanding and the ability to perform tasks, such as navigating websites. This shift from conversational prowess to agentic action marks the new frontier for a true "step change" in AI capabilities.
The transition from supervised learning (copying internet text) to reinforcement learning (rewarding a model for achieving a goal) marks a fundamental breakthrough. This method, used in Anthropic's Opus 3 model, allows AI to develop novel problem-solving capabilities beyond simple data emulation.
The distinction between imitation learning and reinforcement learning (RL) is not a rigid dichotomy. Next-token prediction in LLMs can be framed as a form of RL where the "episode" is just one token long and the reward is based on prediction accuracy. This conceptual model places both learning paradigms on a continuous spectrum rather than in separate categories.
Like fossil fuels, finite human data isn't a dead-end for AI but a crucial, non-renewable resource. It provides the initial energy to bootstrap more advanced, self-sustaining learning systems (the AI equivalent of renewable energy), which couldn't have been built from scratch. This frames imitation learning as a necessary intermediate step, not the final destination.
A key gap between AI and human intelligence is the lack of experiential learning. Unlike a human who improves on a job over time, an LLM is stateless. It doesn't truly learn from interactions; it's the same static model for every user, which is a major barrier to AGI.