Early AI models advanced by scraping web text and code. The next revolution, especially in "AI for science," requires overcoming a major hurdle: consolidating and formatting the world's vast but fragmented scientific data across disciplines like chemistry and materials science for model training.

Related Insights

The AI industry is hitting data limits for training massive, general-purpose models. The next wave of progress will likely come from creating highly specialized models for specific domains, similar to DeepMind's AlphaFold, which can achieve superhuman performance on narrow tasks.

Public internet data has been largely exhausted for training AI models. The real competitive advantage and source for next-generation, specialized AI will be the vast, untapped reservoirs of proprietary data locked inside corporations, like R&D data from pharmaceutical or semiconductor companies.

The next major AI breakthrough will come from applying generative models to complex systems beyond human language, such as biology. By treating biological processes as a unique "language," AI could discover novel therapeutics or research paths, leading to a "Move 37" moment in science.

The era of advancing AI simply by scaling pre-training is ending due to data limits. The field is re-entering a research-heavy phase focused on novel, more efficient training paradigms beyond just adding more compute to existing recipes. The bottleneck is shifting from resources back to ideas.

Foundation models can't be trained for physics using existing literature because the data is too noisy and lacks published negative results. A physical lab is needed to generate clean data and capture the learning signal from failed experiments, which is a core thesis for Periodic Labs.

The primary barrier to AI in drug discovery is the lack of large, high-quality training datasets. The emergence of federated learning platforms, which protect raw data while collectively training models, is a critical and undersung development for advancing the field.

For years, access to compute was the primary bottleneck in AI development. Now, as public web data is largely exhausted, the limiting factor is access to high-quality, proprietary data from enterprises and human experts. This shifts the focus from building massive infrastructure to forming data partnerships and expertise.

Current AI for protein engineering relies on small public datasets like the PDB (~10,000 structures), causing models to "hallucinate" or default to known examples. This data bottleneck, orders of magnitude smaller than data used for LLMs, hinders the development of novel therapeutics.

The bottleneck for AI in drug development isn't the sophistication of the models but the absence of large-scale, high-quality biological data sets. Without comprehensive data on how drugs interact within complex human systems, even the best AI models cannot make accurate predictions.

Dr. Fei-Fei Li realized AI was stagnating not from flawed algorithms, but a missed scientific hypothesis. The breakthrough insight behind ImageNet was that creating a massive, high-quality dataset was the fundamental problem to solve, shifting the paradigm from being model-centric to data-centric.