For years, access to compute was the primary bottleneck in AI development. Now, as public web data is largely exhausted, the limiting factor is access to high-quality, proprietary data from enterprises and human experts. This shifts the focus from building massive infrastructure to forming data partnerships and expertise.
LLMs have hit a wall by scraping nearly all available public data. The next phase of AI development and competitive differentiation will come from training models on high-quality, proprietary data generated by human experts. This creates a booming "data as a service" industry for companies like Micro One that recruit and manage these experts.
The conventional wisdom that enterprises are blocked by a lack of clean, accessible data is wrong. The true bottleneck is people and change management. Scrappy teams can derive significant value from existing, imperfect internal and public data; the real challenge is organizational inertia and process redesign.
The era of advancing AI simply by scaling pre-training is ending due to data limits. The field is re-entering a research-heavy phase focused on novel, more efficient training paradigms beyond just adding more compute to existing recipes. The bottleneck is shifting from resources back to ideas.
AI's evolution can be seen in two eras. The first, the "ImageNet era," required massive human effort for supervised labeling within a fixed ontology. The modern era unlocked exponential growth by developing algorithms that learn from the implicit structure of vast, unlabeled internet data, removing the human bottleneck.
Enterprises struggle to get value from AI due to a lack of iterative, data-science expertise. The winning model for AI companies isn't just selling APIs, but embedding "forward deployment" teams of engineers and scientists to co-create solutions, closing the gap between prototype and production value.
The future of valuable AI lies not in models trained on the abundant public internet, but in those built on scarce, proprietary data. For fields like robotics and biology, this data doesn't exist to be scraped; it must be actively created, making the data generation process itself the key competitive moat.
The primary reason multi-million dollar AI initiatives stall or fail is not the sophistication of the models, but the underlying data layer. Traditional data infrastructure creates delays in moving and duplicating information, preventing the real-time, comprehensive data access required for AI to deliver business value. The focus on algorithms misses this foundational roadblock.
A critical weakness of current AI models is their inefficient learning process. They require exponentially more experience—sometimes 100,000 times more data than a human encounters in a lifetime—to acquire their skills. This highlights a key difference from human cognition and a major hurdle for developing more advanced, human-like AI.
Data is becoming more expensive not from scarcity, but because the work has evolved. Simple labeling is over. Costs are now driven by the need for pricey domain experts for specialized data preparation and creative teams to build complex, synthetic environments for training agents.
Dr. Fei-Fei Li realized AI was stagnating not from flawed algorithms, but a missed scientific hypothesis. The breakthrough insight behind ImageNet was that creating a massive, high-quality dataset was the fundamental problem to solve, shifting the paradigm from being model-centric to data-centric.