To make agents useful over long periods, Tasklet engineers an "illusion" of infinite memory. Instead of feeding a long chat history, they use advanced context engineering: LLM-based compaction, scoping context for sub-agents, and having the LLM manage its own state in a SQL database to recall relevant information efficiently.
People struggle with AI prompts because the model lacks background on their goals and progress. The solution is 'Context Engineering': creating an environment where the AI continuously accumulates user-specific information, materials, and intent, reducing the need for constant prompt tweaking.
The effectiveness of agentic AI in complex domains like IT Ops hinges on "context engineering." This involves strategically selecting the right data (logs, metrics) to feed the LLM, preventing garbage-in-garbage-out, reducing costs, and avoiding hallucinations for precise, reliable answers.
The early focus on crafting the perfect prompt is obsolete. Sophisticated AI interaction is now about 'context engineering': architecting the entire environment by providing models with the right tools, data, and retrieval mechanisms to guide their reasoning process effectively.
Long, continuous AI chat threads degrade output quality as the context window fills up, making it harder for the model to recall early details. To maintain high-quality results, treat each discrete feature or task as a new chat, ensuring the agent has a clean, focused context for each job.
Long-running AI agent conversations degrade in quality as the context window fills. The best engineers combat this with "intentional compaction": they direct the agent to summarize its progress into a clean markdown file, then start a fresh session using that summary as the new, clean input. This is like rebooting the agent's short-term memory.
Long conversations degrade LLM performance as attention gets clogged with irrelevant details. An expert workflow is to stop, ask the model to summarize the key points of the discussion, and then start a fresh chat with that summary as the initial prompt. This keeps the context clean and the model on track.
Contrary to the trend toward multi-agent systems, Tasklet finds that one powerful agent with access to all context and tools is superior for a single user's goals. Splitting tasks among specialized agents is less effective than giving one generalist agent all information, as foundation models are already experts at everything.
Moving beyond simple commands (prompt engineering) to designing the full instructional input is crucial. This "context engineering" combines system prompts, user history (memory), and external data (RAG) to create deeply personalized and stateful AI experiences.
Overloading LLMs with excessive context degrades performance, a phenomenon known as 'context rot'. Claude Skills address this by loading context only when relevant to a specific task. This laser-focused approach improves accuracy and avoids the performance degradation seen in broader project-level contexts.
While prompt engineering focuses on crafting the human message, context engineering is a broader discipline that also manages the flow of information from a potentially large number of tool calls, a key challenge in building effective agents.