People struggle with AI prompts because the model lacks background on their goals and progress. The solution is 'Context Engineering': creating an environment where the AI continuously accumulates user-specific information, materials, and intent, reducing the need for constant prompt tweaking.

Related Insights

With models like Gemini 3, the key skill is shifting from crafting hyper-specific, constrained prompts to making ambitious, multi-faceted requests. Users trained on older models tend to pare down their asks, but the latest AIs are 'pent up with creative capability' and yield better results from bigger challenges.

Instead of prompting a specialized AI tool directly, experts employ a meta-workflow. They first use a general LLM like ChatGPT or Claude to generate a detailed, context-rich 'master prompt' based on a PRD or user story, which they then paste into the specialized tool for superior results.

Before delegating a complex task, use a simple prompt to have a context-aware system generate a more detailed and effective prompt. This "prompt-for-a-prompt" workflow adds necessary detail and structure, significantly improving the agent's success rate and saving rework.

The effectiveness of agentic AI in complex domains like IT Ops hinges on "context engineering." This involves strategically selecting the right data (logs, metrics) to feed the LLM, preventing garbage-in-garbage-out, reducing costs, and avoiding hallucinations for precise, reliable answers.

Many AI tools expose the model's reasoning before generating an answer. Reading this internal monologue is a powerful debugging technique. It reveals how the AI is interpreting your instructions, allowing you to quickly identify misunderstandings and improve the clarity of your prompts for better results.

The early focus on crafting the perfect prompt is obsolete. Sophisticated AI interaction is now about 'context engineering': architecting the entire environment by providing models with the right tools, data, and retrieval mechanisms to guide their reasoning process effectively.

Moving beyond simple commands (prompt engineering) to designing the full instructional input is crucial. This "context engineering" combines system prompts, user history (memory), and external data (RAG) to create deeply personalized and stateful AI experiences.

When a prompt yields poor results, use a meta-prompting technique. Feed the failing prompt back to the AI, describe the incorrect output, specify the desired outcome, and explicitly grant it permission to rewrite, add, or delete. The AI will then debug and improve its own instructions.

AI development has evolved to where models can be directed using human-like language. Instead of complex prompt engineering or fine-tuning, developers can provide instructions, documentation, and context in plain English to guide the AI's behavior, democratizing access to sophisticated outcomes.

While prompt engineering focuses on crafting the human message, context engineering is a broader discipline that also manages the flow of information from a potentially large number of tool calls, a key challenge in building effective agents.