Afeyan proposes that AI's emergence forces us to broaden our definition of intelligence beyond humans. By viewing nature—from cells to ecosystems—as intelligent systems capable of adaptation and anticipation, we can move beyond reductionist biology to unlock profound new understandings of disease.

Related Insights

Powerful AI models for biology exist, but the industry lacks a breakthrough user interface—a "ChatGPT for science"—that makes them accessible, trustworthy, and integrated into wet lab scientists' workflows. This adoption and translation problem is the biggest hurdle, not the raw capability of the AI models themselves.

Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.

The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.

CZI’s mission to cure all diseases is seen as unambitious by AI experts but overly ambitious by biologists. This productive tension forces biologists to pinpoint concrete obstacles and AI experts to grasp data complexity, accelerating the overall pace of innovation.

Treat advanced AI systems not as software with binary outcomes, but as a new employee with a unique persona. They can offer diverse, non-obvious insights and a different "chain of thought," sometimes finding issues even human experts miss and providing complementary perspectives.

Frances Arnold, an engineer by training, reframed biological evolution as a powerful optimization algorithm. Instead of a purely biological concept, she saw it as a process for iterative design that could be harnessed in the lab to build new enzymes far more effectively than traditional methods.

World Labs co-founder Fei-Fei Li posits that spatial intelligence—the ability to reason and interact in 3D space—is a distinct and complementary form of intelligence to language. This capability is essential for tasks like robotic manipulation and scientific discovery that cannot be reduced to linguistic descriptions.

An advanced AI will likely be sentient. Therefore, it may be easier to align it to a general principle of caring for all sentient life—a group to which it belongs—rather than the narrower, more alien concept of caring only for humanity. This leverages a potential for emergent, self-inclusive empathy.

Human intelligence is multifaceted. While LLMs excel at linguistic intelligence, they lack spatial intelligence—the ability to understand, reason, and interact within a 3D world. This capability, crucial for tasks from robotics to scientific discovery, is the focus for the next wave of AI models.

Biological intelligence has no OS or APIs; the physics of the brain *is* the computation. Unconventional AI's CEO Naveen Rao argues that current AI is inefficient because it runs on layers of abstraction. The future is hardware where intelligence is an emergent property of the system's physics.

Frame Nature as an 'Intelligence' to Unlock Deeper Biological Insights | RiffOn