As benchmarks become standard, AI labs optimize models to excel at them, leading to score inflation without necessarily improving generalized intelligence. The solution isn't a single perfect test, but continuously creating new evals that measure capabilities relevant to real-world user needs.

Related Insights

Once an evaluation becomes an industry standard, AI labs focus research on improving scores for that specific task. This can lead to models excelling at narrow capabilities, like competition math, without a corresponding increase in general intelligence or real-world usefulness, a classic example of Goodhart's Law.

The proliferation of AI leaderboards incentivizes companies to optimize models for specific benchmarks. This creates a risk of "acing the SATs" where models excel on tests but don't necessarily make progress on solving real-world problems. This focus on gaming metrics could diverge from creating genuine user value.

AI models show impressive performance on evaluation benchmarks but underwhelm in real-world applications. This gap exists because researchers, focused on evals, create reinforcement learning (RL) environments that mirror test tasks. This leads to narrow intelligence that doesn't generalize, a form of human-driven reward hacking.

The most significant gap in AI research is its focus on academic evaluations instead of tasks customers value, like medical diagnosis or legal drafting. The solution is using real-world experts to define benchmarks that measure performance on economically relevant work.

Once a benchmark becomes a standard, research efforts naturally shift to optimizing for that specific metric. This can lead to models that excel on the test but don't necessarily improve in general, real-world capabilities—a classic example of Goodhart's Law in AI.

The primary bottleneck in improving AI is no longer data or compute, but the creation of 'evals'—tests that measure a model's capabilities. These evals act as product requirement documents (PRDs) for researchers, defining what success looks like and guiding the training process.

Traditional AI benchmarks are seen as increasingly incremental and less interesting. The new frontier for evaluating a model's true capability lies in applied, complex tasks that mimic real-world interaction, such as building in Minecraft (MC Bench) or managing a simulated business (VendingBench), which are more revealing of raw intelligence.

Traditional, static benchmarks for AI models go stale almost immediately. The superior approach is creating dynamic benchmarks that update constantly based on real-world usage and user preferences, which can then be turned into products themselves, like an auto-routing API.

An analysis of AI model performance shows a 2-2.5x improvement in intelligence scores across all major players within the last year. This rapid advancement is leading to near-perfect scores on existing benchmarks, indicating a need for new, more challenging tests to measure future progress.

Standardized AI benchmarks are saturated and becoming less relevant for real-world use cases. The true measure of a model's improvement is now found in custom, internal evaluations (evals) created by application-layer companies. Progress for a legal AI tool, for example, is a more meaningful indicator than a generic test score.