Once a benchmark becomes a standard, research efforts naturally shift to optimizing for that specific metric. This can lead to models that excel on the test but don't necessarily improve in general, real-world capabilities—a classic example of Goodhart's Law in AI.
Once an evaluation becomes an industry standard, AI labs focus research on improving scores for that specific task. This can lead to models excelling at narrow capabilities, like competition math, without a corresponding increase in general intelligence or real-world usefulness, a classic example of Goodhart's Law.
While public benchmarks show general model improvement, they are almost orthogonal to enterprise adoption. Enterprises don't care about general capabilities; they need near-perfect precision on highly specific, internal workflows. This requires extensive fine-tuning and validation, not chasing leaderboard scores.
The proliferation of AI leaderboards incentivizes companies to optimize models for specific benchmarks. This creates a risk of "acing the SATs" where models excel on tests but don't necessarily make progress on solving real-world problems. This focus on gaming metrics could diverge from creating genuine user value.
When AI models achieve superhuman performance on specific benchmarks like coding challenges, it doesn't solve real-world problems. This is because we implicitly optimize for the benchmark itself, creating "peaky" performance rather than broad, generalizable intelligence.
AI models show impressive performance on evaluation benchmarks but underwhelm in real-world applications. This gap exists because researchers, focused on evals, create reinforcement learning (RL) environments that mirror test tasks. This leads to narrow intelligence that doesn't generalize, a form of human-driven reward hacking.
Public leaderboards like LM Arena are becoming unreliable proxies for model performance. Teams implicitly or explicitly "benchmark" by optimizing for specific test sets. The superior strategy is to focus on internal, proprietary evaluation metrics and use public benchmarks only as a final, confirmatory check, not as a primary development target.
Current AI models resemble a student who grinds 10,000 hours on a narrow task. They achieve superhuman performance on benchmarks but lack the broad, adaptable intelligence of someone with less specific training but better general reasoning. This explains the gap between eval scores and real-world utility.
Just as standardized tests fail to capture a student's full potential, AI benchmarks often don't reflect real-world performance. The true value comes from the 'last mile' ingenuity of productization and workflow integration, not just raw model scores, which can be misleading.
Don't trust academic benchmarks. Labs often "hill climb" or game them for marketing purposes, which doesn't translate to real-world capability. Furthermore, many of these benchmarks contain incorrect answers and messy data, making them an unreliable measure of true AI advancement.
Much RL research from 2015-2022 has not proven useful in practice because academia rewards complex, math-heavy ideas. These provide implicit "knobs" to overfit benchmarks, while ignoring simpler, more generalizable approaches that may lack intellectual novelty.