To isolate for agency rather than just knowledge, METR's 'time horizon' metric measures how long tasks take for human experts who already possess the required background knowledge. This methodology aims to reconcile why models can be 'geniuses' on knowledge-intensive tasks (like IMO problems) but 'idiots' on simple, multi-step actions.
METR's research reveals a consistent, exponential trend in AI capabilities over the last five years. When measured by the length of tasks an AI can complete (based on human completion time), this 'time horizon' has been doubling approximately every seven months, providing a single, robust metric for tracking progress.
AI intelligence shouldn't be measured with a single metric like IQ. AIs exhibit "jagged intelligence," being superhuman in specific domains (e.g., mastering 200 languages) while simultaneously lacking basic capabilities like long-term planning, making them fundamentally unlike human minds.
Human time to completion is a strong predictor of AI success, but it's not perfect. METR's analysis found that a task's qualitative 'messiness'—how clean and simple it is versus tricky and rough—also independently predicts whether an AI will succeed. This suggests that pure task length doesn't capture all aspects of difficulty for AIs.
While the 'time horizon' metric effectively tracks AI capability, it's unclear at what point it signals danger. Researchers don't know if the critical threshold for AI-driven R&D acceleration is a 40-hour task, a week-long task, or something else. This gap makes it difficult to translate current capability measurements into a concrete risk timeline.
Progress in complex, long-running agentic tasks is better measured by tokens consumed rather than raw time. Improving token efficiency, as seen from GPT-5 to 5.1, directly enables more tool calls and actions within a feasible operational budget, unlocking greater capabilities.
Current AI models resemble a student who grinds 10,000 hours on a narrow task. They achieve superhuman performance on benchmarks but lack the broad, adaptable intelligence of someone with less specific training but better general reasoning. This explains the gap between eval scores and real-world utility.
When determining what data an RL model should consider, resist including every available feature. Instead, observe how experienced human decision-makers reason about the problem. Their simplified mental models reveal the core signals that truly drive outcomes, leading to more stable, faster-learning, and more interpretable AI systems.
OpenAI identifies agent evaluation as a key challenge. While they can currently grade an entire task's trace, the real difficulty lies in evaluating and optimizing the individual steps within a long, complex agentic workflow. This is a work-in-progress area critical for building reliable, production-grade agents.
While AI models excel at gathering and synthesizing information ('knowing'), they are not yet reliable at executing actions in the real world ('doing'). True agentic systems require bridging this gap by adding crucial layers of validation and human intervention to ensure tasks are performed correctly and safely.
A major challenge for the 'time horizon' metric is its cost. As AI capabilities improve, the tasks needed to benchmark them grow from hours to weeks or months. The cost of paying human experts for these long durations to establish a baseline becomes extremely high, threatening the long-term viability of this evaluation method.