Progress in complex, long-running agentic tasks is better measured by tokens consumed rather than raw time. Improving token efficiency, as seen from GPT-5 to 5.1, directly enables more tool calls and actions within a feasible operational budget, unlocking greater capabilities.
While seemingly logical, hard budget caps on AI usage are ineffective because they can shut down an agent mid-task, breaking workflows and corrupting data. The superior approach is "governed consumption" through infrastructure, which allows for rate limits and monitoring without compromising the agent's core function.
Coding is a unique domain that severely tests LLM capabilities. Unlike other use cases, it involves extremely long-running sessions (up to 30 days for a single task), massive context accumulation from files and command outputs, and requires high precision, making it a key driver for core model research.
Don't pass the full, token-heavy output of every tool call back into an agent's message history. Instead, save the raw data to an external system (like a file system or agent state) and only provide the agent with a summary or pointer.
Long-running AI agent conversations degrade in quality as the context window fills. The best engineers combat this with "intentional compaction": they direct the agent to summarize its progress into a clean markdown file, then start a fresh session using that summary as the new, clean input. This is like rebooting the agent's short-term memory.
The distinction between imitation learning and reinforcement learning (RL) is not a rigid dichotomy. Next-token prediction in LLMs can be framed as a form of RL where the "episode" is just one token long and the reward is based on prediction accuracy. This conceptual model places both learning paradigms on a continuous spectrum rather than in separate categories.
OpenAI identifies agent evaluation as a key challenge. While they can currently grade an entire task's trace, the real difficulty lies in evaluating and optimizing the individual steps within a long, complex agentic workflow. This is a work-in-progress area critical for building reliable, production-grade agents.
Replit's leap in AI agent autonomy isn't from a single superior model, but from orchestrating multiple specialized agents using models from various providers. This multi-agent approach creates a different, faster scaling paradigm for task completion compared to single-model evaluations, suggesting a new direction for agent research.
The simple "tool calling in a loop" model for agents is deceptive. Without managing context, token-heavy tool calls quickly accumulate, leading to high costs ($1-2 per run), hitting context limits, and performance degradation known as "context rot."
OpenAI's new GDP-val benchmark evaluates models on complex, real-world knowledge work tasks, not abstract IQ tests. This pivot signifies that the true measure of AI progress is now its ability to perform economically valuable human jobs, making performance metrics directly comparable to professional output.
To make agents useful over long periods, Tasklet engineers an "illusion" of infinite memory. Instead of feeding a long chat history, they use advanced context engineering: LLM-based compaction, scoping context for sub-agents, and having the LLM manage its own state in a SQL database to recall relevant information efficiently.