Models that generate "chain-of-thought" text before providing an answer are powerful but slow and computationally expensive. For tuned business workflows, the latency from waiting for these extra reasoning tokens is a major, often overlooked, drawback that impacts user experience and increases costs.

Related Insights

As frontier AI models reach a plateau of perceived intelligence, the key differentiator is shifting to user experience. Low-latency, reliable performance is becoming more critical than marginal gains on benchmarks, making speed the next major competitive vector for AI products like ChatGPT.

OpenAI found that significant upgrades to model intelligence, particularly for complex reasoning, did not improve user engagement. Users overwhelmingly prefer faster, simpler answers over more accurate but time-consuming responses, a disconnect that benefited competitors like Google.

When evaluating AI agents, the total cost of task completion is what matters. A model with a higher per-token cost can be more economical if it resolves a user's query in fewer turns than a cheaper, less capable model. This makes "number of turns" a primary efficiency metric.

The excitement around AI often overshadows its practical business implications. Implementing LLMs involves significant compute costs that scale with usage. Product leaders must analyze the ROI of different models to ensure financial viability before committing to a solution.

Tasklet's CEO reports that when AI agents fail at using a computer GUI, it's rarely due to a lack of intelligence. The real bottlenecks are the high cost and slow speed of the screenshot-and-reason process, which causes agents to hit usage or budget limits before completing complex tasks.

Classifying a model as "reasoning" based on a chain-of-thought step is no longer useful. With massive differences in token efficiency, a so-called "reasoning" model can be faster and cheaper than a "non-reasoning" one for a given task. The focus is shifting to a continuous spectrum of capability versus overall cost.

A 'GenAI solves everything' mindset is flawed. High-latency models are unsuitable for real-time operational needs, like optimizing a warehouse worker's scanning path, which requires millisecond responses. The key is to apply the right tool—be it an optimizer, machine learning, or GenAI—to the specific business problem.

Companies like OpenAI and Anthropic are intentionally shrinking their flagship models (e.g., GPT-4.0 is smaller than GPT-4). The biggest constraint isn't creating more powerful models, but serving them at a speed users will tolerate. Slow models kill adoption, regardless of their intelligence.

The binary distinction between "reasoning" and "non-reasoning" models is becoming obsolete. The more critical metric is now "token efficiency"—a model's ability to use more tokens only when a task's difficulty requires it. This dynamic token usage is a key differentiator for cost and performance.

The most significant recent AI advance is models' ability to use chain-of-thought reasoning, not just retrieve data. However, most business users are unaware of this 'deep research' capability and continue using AI as a simple search tool, missing its transformative potential for complex problem-solving.