When using AI for complex analysis like a medical case, providing a detailed, unabridged history is crucial. The host found that when he summarized his son's case history to start a new chat, the model's performance noticeably worsened because it lacked the fine-grained, day-to-day data points for accurate trend analysis.

Related Insights

Current LLMs are intelligent enough for many tasks but fail because they lack access to complete context—emails, Slack messages, past data. The next step is building products that ingest this real-world context, making it available for the model to act upon.

People struggle with AI prompts because the model lacks background on their goals and progress. The solution is 'Context Engineering': creating an environment where the AI continuously accumulates user-specific information, materials, and intent, reducing the need for constant prompt tweaking.

Karpathy identifies a key missing piece for continual learning in AI: an equivalent to sleep. Humans seem to use sleep to distill the day's experiences (their "context window") into the compressed weights of the brain. LLMs lack this distillation phase, forcing them to restart from a fixed state in every new session.

To get the best results from AI, treat it like a virtual assistant you can have a dialogue with. Instead of focusing on the perfect single prompt, provide rich context about your goals and then engage in a back-and-forth conversation. This collaborative approach yields more nuanced and useful outputs.

Even models with million-token context windows suffer from "context rot" when overloaded with information. Performance degrades as the model struggles to find the signal in the noise. Effective context engineering requires precision, packing the window with only the exact data needed.

Long, continuous AI chat threads degrade output quality as the context window fills up, making it harder for the model to recall early details. To maintain high-quality results, treat each discrete feature or task as a new chat, ensuring the agent has a clean, focused context for each job.

Long-running AI agent conversations degrade in quality as the context window fills. The best engineers combat this with "intentional compaction": they direct the agent to summarize its progress into a clean markdown file, then start a fresh session using that summary as the new, clean input. This is like rebooting the agent's short-term memory.

Long conversations degrade LLM performance as attention gets clogged with irrelevant details. An expert workflow is to stop, ask the model to summarize the key points of the discussion, and then start a fresh chat with that summary as the initial prompt. This keeps the context clean and the model on track.

The progress of AI in predicting cancer treatment is stalled not by algorithms, but by the data used to train them. Relying solely on static genetic data is insufficient. The critical missing piece is functional, contextual data showing how patient cells actually respond to drugs.

Overloading LLMs with excessive context degrades performance, a phenomenon known as 'context rot'. Claude Skills address this by loading context only when relevant to a specific task. This laser-focused approach improves accuracy and avoids the performance degradation seen in broader project-level contexts.