The future of AI is hard to predict because increasing a model's scale often produces 'emergent properties'—new capabilities that were not designed or anticipated. This means even experts are often surprised by what new, larger models can do, making the development path non-linear.
While more data and compute yield linear improvements, true step-function advances in AI come from unpredictable algorithmic breakthroughs like Transformers. These creative ideas are the most difficult to innovate on and represent the highest-leverage, yet riskiest, area for investment and research focus.
A 10x increase in compute may only yield a one-tier improvement in model performance. This appears inefficient but can be the difference between a useless "6-year-old" intelligence and a highly valuable "16-year-old" intelligence, unlocking entirely new economic applications.
Unlike traditional engineering, breakthroughs in foundational AI research often feel binary. A model can be completely broken until a handful of key insights are discovered, at which point it suddenly works. This "all or nothing" dynamic makes it impossible to predict timelines, as you don't know if a solution is a week or two years away.
AI intelligence shouldn't be measured with a single metric like IQ. AIs exhibit "jagged intelligence," being superhuman in specific domains (e.g., mastering 200 languages) while simultaneously lacking basic capabilities like long-term planning, making them fundamentally unlike human minds.
Unlike previous years where the path forward was simply scaling models, leading AI labs now lack a clear vision for the next major breakthrough. This uncertainty, coupled with data limitations, is pushing the industry away from scaling and back toward fundamental, exploratory R&D.
The advancement of AI is not linear. While the industry anticipated a "year of agents" for practical assistance, the most significant recent progress has been in specialized, academic fields like competitive mathematics. This highlights the unpredictable nature of AI development.
AI development is more like farming than engineering. Companies create conditions for models to learn but don't directly code their behaviors. This leads to a lack of deep understanding and results in emergent, unpredictable actions that were never explicitly programmed.
The era of guaranteed progress by simply scaling up compute and data for pre-training is ending. With massive compute now available, the bottleneck is no longer resources but fundamental ideas. The AI field is re-entering a period where novel research, not just scaling existing recipes, will drive the next breakthroughs.
With past shifts like the internet or mobile, we understood the physical constraints (e.g., modem speeds, battery life). With generative AI, we lack a theoretical understanding of its scaling potential, making it impossible to forecast its ultimate capabilities beyond "vibes-based" guesses from experts.
Unlike traditional software, large language models are not programmed with specific instructions. They evolve through a process where different strategies are tried, and those that receive positive rewards are repeated, making their behaviors emergent and sometimes unpredictable.