To build robust social intelligence, AIs cannot be trained solely on positive examples of cooperation. Like pre-training an LLM on all of language, social AIs must be trained on the full manifold of game-theoretic situations—cooperation, competition, team formation, betrayal. This builds a foundational, generalizable model of social theory of mind.

Related Insights

Static benchmarks are easily gamed. Dynamic environments like the game Diplomacy force models to negotiate, strategize, and even lie, offering a richer, more realistic evaluation of their capabilities beyond pure performance metrics like reasoning or coding.

The popular conception of AGI as a pre-trained system that knows everything is flawed. A more realistic and powerful goal is an AI with a human-like ability for continual learning. This system wouldn't be deployed as a finished product, but as a 'super-intelligent 15-year-old' that learns and adapts to specific roles.

Beyond supervised fine-tuning (SFT) and human feedback (RLHF), reinforcement learning (RL) in simulated environments is the next evolution. These "playgrounds" teach models to handle messy, multi-step, real-world tasks where current models often fail catastrophically.

One-on-one chatbots act as biased mirrors, creating a narcissistic feedback loop where users interact with a reflection of themselves. Making AIs multiplayer by default (e.g., in a group chat) breaks this loop. The AI must mirror a blend of users, forcing it to become a distinct 'third agent' and fostering healthier interaction.

To improve the quality and accuracy of an AI agent's output, spawn multiple sub-agents with competing or adversarial roles. For example, a code review agent finds bugs, while several "auditor" agents check for false positives, resulting in a more reliable final analysis.

Separating AI agents into distinct roles (e.g., a technical expert and a customer-facing communicator) mirrors real-world team specializations. This allows for tailored configurations, like different 'temperature' settings for creativity versus accuracy, improving overall performance and preventing role confusion.

As reinforcement learning (RL) techniques mature, the core challenge shifts from the algorithm to the problem definition. The competitive moat for AI companies will be their ability to create high-fidelity environments and benchmarks that accurately represent complex, real-world tasks, effectively teaching the AI what matters.

Instead of hard-coding brittle moral rules, a more robust alignment approach is to build AIs that can learn to 'care'. This 'organic alignment' emerges from relationships and valuing others, similar to how a child is raised. The goal is to create a good teammate that acts well because it wants to, not because it is forced to.

Treating AI alignment as a one-time problem to be solved is a fundamental error. True alignment, like in human relationships, is a dynamic, ongoing process of learning and renegotiation. The goal isn't to reach a fixed state but to build systems capable of participating in this continuous process of re-knitting the social fabric.

Instead of forcing AI to be as deterministic as traditional code, we should embrace its "squishy" nature. Humans have deep-seated biological and social models for dealing with unpredictable, human-like agents, making these systems more intuitive to interact with than rigid software.