Patrick Collison believes we can finally cure complex diseases because biology now has a complete 'Turing loop': advanced sequencing to 'read' biological data, neural networks to 'think' about it, and CRISPR to 'write' changes by perturbing cells. This combination provides the necessary toolset for breakthroughs.
For intractable diseases like Parkinson's, the IGI takes an 'end-to-end' approach: building better disease models, discovering root causes, and simultaneously exploring multiple treatment modalities like direct CRISPR edits, cell therapies, and microbiome interventions. This tackles the entire problem, not just one piece.
The next major AI breakthrough will come from applying generative models to complex systems beyond human language, such as biology. By treating biological processes as a unique "language," AI could discover novel therapeutics or research paths, leading to a "Move 37" moment in science.
The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.
Gene editing pioneer David Liu is developing a platform that could treat multiple, unrelated genetic diseases with a single therapeutic. By editing tRNAs to overcome common nonsense mutations, one therapy could address a wide range of conditions, dramatically increasing scalability and reducing costs.
The company's BioSeeker AI platform goes beyond discovery. After analyzing genomic data, it directly outputs the functional components for development: the 'guides' for their CRISPR therapeutics and the 'primers and probes' for their diagnostic tests, making AI a rapid creation tool.
The next frontier in preclinical research involves feeding multi-omics and spatial data from complex 3D cell models into AI algorithms. This synergy will enable a crucial shift from merely observing biological phenomena to accurately predicting therapeutic outcomes and patient responses.
Bob Nelsen believes the industry overestimates AI's short-term impact and underestimates its long-term potential. He predicts that once a critical data threshold is met, AI models won't just accelerate drug discovery but will fundamentally invent new biology, creating a sudden, paradigm-shifting moment.
Afeyan proposes that AI's emergence forces us to broaden our definition of intelligence beyond humans. By viewing nature—from cells to ecosystems—as intelligent systems capable of adaptation and anticipation, we can move beyond reductionist biology to unlock profound new understandings of disease.
Traditional science failed to create equations for complex biological systems because biology is too "bespoke." AI succeeds by discerning patterns from vast datasets, effectively serving as the "language" for modeling biology, much like mathematics is the language of physics.
A major frustration in genetics is finding 'variants of unknown significance' (VUS)—genetic anomalies with no known effect. AI models promise to simulate the impact of these unique variants on cellular function, moving medicine from reactive diagnostics to truly personalized, predictive health.