Not every identified error requires building a formal evaluation. Some issues, like a simple formatting error, can be fixed directly in the prompt or code without an accompanying eval. Reserve the effort of building robust evals for systemic, complex problems that you anticipate needing to iterate on over time.
Generic evaluation metrics like "helpfulness" or "conciseness" are vague and untrustworthy. A better approach is to first perform manual error analysis to find recurring problems (e.g., "tour scheduling failures"). Then, build specific, targeted evaluations (evals) that directly measure the frequency of these concrete issues, making metrics meaningful.
Treating AI evaluation like a final exam is a mistake. For critical enterprise systems, evaluations should be embedded at every step of an agent's workflow (e.g., after planning, before action). This is akin to unit testing in classic software development and is essential for building trustworthy, production-ready agents.
Despite sophisticated AI debugging tools that monitor logs and browsers, the most efficient solution is often the simplest. Highlighting an error message, copying it, and pasting it directly into an AI agent's chat window is a fast and reliable way to get a fix without over-engineering your workflow.
Many AI tools expose the model's reasoning before generating an answer. Reading this internal monologue is a powerful debugging technique. It reveals how the AI is interpreting your instructions, allowing you to quickly identify misunderstandings and improve the clarity of your prompts for better results.
Building a functional AI agent is just the starting point. The real work lies in developing a set of evaluations ("evals") to test if the agent consistently behaves as expected. Without quantifying failures and successes against a standard, you're just guessing, not iteratively improving the agent's performance.
The common mistake in building AI evals is jumping straight to writing automated tests. The correct first step is a manual process called "error analysis" or "open coding," where a product expert reviews real user interaction logs to understand what's actually going wrong. This grounds your entire evaluation process in reality.
When a prompt yields poor results, use a meta-prompting technique. Feed the failing prompt back to the AI, describe the incorrect output, specify the desired outcome, and explicitly grant it permission to rewrite, add, or delete. The AI will then debug and improve its own instructions.
You don't need to create an automated "LLM as a judge" for every potential failure. Many issues discovered during error analysis can be fixed with a simple prompt adjustment. Reserve the effort of building robust, automated evals for the 4-7 most persistent and critical failure modes that prompt changes alone cannot solve.
When an AI model makes the same undesirable output two or three times, treat it as a signal. Create a custom rule or prompt instruction that explicitly codifies the desired behavior. This trains the AI to avoid that specific mistake in the future, improving consistency over time.
Instead of seeking a "magical system" for AI quality, the most effective starting point is a manual process called error analysis. This involves spending a few hours reading through ~100 random user interactions, taking simple notes on failures, and then categorizing those notes to identify the most common problems.