You don't need to create an automated "LLM as a judge" for every potential failure. Many issues discovered during error analysis can be fixed with a simple prompt adjustment. Reserve the effort of building robust, automated evals for the 4-7 most persistent and critical failure modes that prompt changes alone cannot solve.
Don't treat evals as a mere checklist. Instead, use them as a creative tool to discover opportunities. A well-designed eval can reveal that a product is underperforming for a specific user segment, pointing directly to areas for high-impact improvement that a simple "vibe check" would miss.
Generic evaluation metrics like "helpfulness" or "conciseness" are vague and untrustworthy. A better approach is to first perform manual error analysis to find recurring problems (e.g., "tour scheduling failures"). Then, build specific, targeted evaluations (evals) that directly measure the frequency of these concrete issues, making metrics meaningful.
Don't ask an LLM to perform initial error analysis; it lacks the product context to spot subtle failures. Instead, have a human expert write detailed, freeform notes ("open codes"). Then, leverage an LLM's strength in synthesis to automatically categorize those hundreds of human-written notes into actionable failure themes ("axial codes").
High productivity isn't about using AI for everything. It's a disciplined workflow: breaking a task into sub-problems, using an LLM for high-leverage parts like scaffolding and tests, and reserving human focus for the core implementation. This avoids the sunk cost of forcing AI on unsuitable tasks.
Instead of manually refining a complex prompt, create a process where an AI agent evaluates its own output. By providing a framework for self-critique, including quantitative scores and qualitative reasoning, the AI can iteratively enhance its own system instructions and achieve a much stronger result.
The primary bottleneck in improving AI is no longer data or compute, but the creation of 'evals'—tests that measure a model's capabilities. These evals act as product requirement documents (PRDs) for researchers, defining what success looks like and guiding the training process.
The common mistake in building AI evals is jumping straight to writing automated tests. The correct first step is a manual process called "error analysis" or "open coding," where a product expert reviews real user interaction logs to understand what's actually going wrong. This grounds your entire evaluation process in reality.
The prompts for your "LLM as a judge" evals function as a new form of PRD. They explicitly define the desired behavior, edge cases, and quality standards for your AI agent. Unlike static PRDs, these are living documents, derived from real user data and are constantly, automatically testing if the product meets its requirements.
Fine-tuning an AI model is most effective when you use high-signal data. The best source for this is the set of difficult examples where your system consistently fails. The processes of error analysis and evaluation naturally curate this valuable dataset, making fine-tuning a logical and powerful next step after prompt engineering.
When an AI model makes the same undesirable output two or three times, treat it as a signal. Create a custom rule or prompt instruction that explicitly codifies the desired behavior. This trains the AI to avoid that specific mistake in the future, improving consistency over time.