AI models will produce a few stunning, one-off results in fields like materials science. These isolated successes will trigger an overstated hype cycle proclaiming 'science is solved,' masking the longer, more understated trend of AI's true, profound, and incremental impact on scientific discovery.
Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.
Unlike traditional engineering, breakthroughs in foundational AI research often feel binary. A model can be completely broken until a handful of key insights are discovered, at which point it suddenly works. This "all or nothing" dynamic makes it impossible to predict timelines, as you don't know if a solution is a week or two years away.
The sudden arrival of powerful AI like GPT-3 was a non-repeatable event: training on the entire internet and all existing books. With this data now fully "eaten," future advancements will feel more incremental, relying on the slower process of generating new, high-quality expert data.
The advancement of AI is not linear. While the industry anticipated a "year of agents" for practical assistance, the most significant recent progress has been in specialized, academic fields like competitive mathematics. This highlights the unpredictable nature of AI development.
In high-stakes fields like pharma, AI's ability to generate more ideas (e.g., drug targets) is less valuable than its ability to aid in decision-making. Physical constraints on experimentation mean you can't test everything. The real need is for tools that help humans evaluate, prioritize, and gain conviction on a few key bets.
The era of guaranteed progress by simply scaling up compute and data for pre-training is ending. With massive compute now available, the bottleneck is no longer resources but fundamental ideas. The AI field is re-entering a period where novel research, not just scaling existing recipes, will drive the next breakthroughs.
AI can produce scientific claims and codebases thousands of times faster than humans. However, the meticulous work of validating these outputs remains a human task. This growing gap between generation and verification could create a backlog of unproven ideas, slowing true scientific advancement.
AI is developing spatial reasoning that approaches human levels. This will enable it to solve novel physics problems, leading to breakthroughs that create entirely new classes of technology, much like discoveries in the 1940s led to GPS and cell phones.
The discourse around AGI is caught in a paradox. Either it is already emerging, in which case it's less a cataclysmic event and more an incremental software improvement, or it remains a perpetually receding future goal. This captures the tension between the hype of superhuman intelligence and the reality of software development.
Current LLMs fail at science because they lack the ability to iterate. True scientific inquiry is a loop: form a hypothesis, conduct an experiment, analyze the result (even if incorrect), and refine. AI needs this same iterative capability with the real world to make genuine discoveries.