The sudden arrival of powerful AI like GPT-3 was a non-repeatable event: training on the entire internet and all existing books. With this data now fully "eaten," future advancements will feel more incremental, relying on the slower process of generating new, high-quality expert data.
The industry has already exhausted the public web data used to train foundational AI models, a point underscored by the phrase "we've already run out of data." The next leap in AI capability and business value will come from harnessing the vast, proprietary data currently locked behind corporate firewalls.
The current limitation of LLMs is their stateless nature; they reset with each new chat. The next major advancement will be models that can learn from interactions and accumulate skills over time, evolving from a static tool into a continuously improving digital colleague.
The era of advancing AI simply by scaling pre-training is ending due to data limits. The field is re-entering a research-heavy phase focused on novel, more efficient training paradigms beyond just adding more compute to existing recipes. The bottleneck is shifting from resources back to ideas.
For the first time in years, the perceived leap in LLM capabilities has slowed. While models have improved, the cost increase (from $20 to $200/month for top-tier access) is not matched by a proportional increase in practical utility, suggesting a potential plateau or diminishing returns.
AI's evolution can be seen in two eras. The first, the "ImageNet era," required massive human effort for supervised labeling within a fixed ontology. The modern era unlocked exponential growth by developing algorithms that learn from the implicit structure of vast, unlabeled internet data, removing the human bottleneck.
The era of guaranteed progress by simply scaling up compute and data for pre-training is ending. With massive compute now available, the bottleneck is no longer resources but fundamental ideas. The AI field is re-entering a period where novel research, not just scaling existing recipes, will drive the next breakthroughs.
For years, access to compute was the primary bottleneck in AI development. Now, as public web data is largely exhausted, the limiting factor is access to high-quality, proprietary data from enterprises and human experts. This shifts the focus from building massive infrastructure to forming data partnerships and expertise.
AI progress was expected to stall in 2024-2025 due to hardware limitations on pre-training scaling laws. However, breakthroughs in post-training techniques like reasoning and test-time compute provided a new vector for improvement, bridging the gap until next-generation chips like NVIDIA's Blackwell arrived.
A critical weakness of current AI models is their inefficient learning process. They require exponentially more experience—sometimes 100,000 times more data than a human encounters in a lifetime—to acquire their skills. This highlights a key difference from human cognition and a major hurdle for developing more advanced, human-like AI.
Dr. Fei-Fei Li realized AI was stagnating not from flawed algorithms, but a missed scientific hypothesis. The breakthrough insight behind ImageNet was that creating a massive, high-quality dataset was the fundamental problem to solve, shifting the paradigm from being model-centric to data-centric.