Dr. Bardia emphasizes that ESR1 is an 'acquired alteration,' meaning the mutation can develop during treatment. This necessitates a shift from one-time diagnostic testing to a dynamic, serial testing model. Repeat testing is critical to identify these actionable mutations as they arise, allowing patients to access newly approved targeted therapies.
ctDNA testing (liquid biopsy) is more effective than tissue biopsy for identifying ESR1 mutations. It samples DNA from all metastatic sites, capturing the disease's genetic heterogeneity and reflecting the most active resistance mechanisms, unlike a single-site needle biopsy which can miss them.
The SERENA-6 trial showed improved survival by switching therapy upon ctDNA detection of ESR1 mutations. However, it required screening over 3,300 patients to randomize just 315, highlighting the immense scale, cost, and patient drop-off of applying this serial monitoring strategy in standard clinical practice.
A study switching therapy based on ctDNA-detected ESR1 mutations revealed patients felt significantly better after the switch, even without visible tumor progression on scans. This counterintuitive finding suggests molecular progression has a subclinical impact on quality of life, supporting proactive, biomarker-driven treatment changes before patients clinically deteriorate.
NGS testing is revealing that acquired HER2 kinase domain mutations, not amplifications, are an emerging resistance mechanism in ER+ lobular breast cancer. This creates a targetable population for HER2 TKIs like neratinib or tucatinib, offering a new line of targeted therapy.
ESR1 mutations in breast cancer are acquired alterations, meaning they can be missed by a single test. The speaker advocates for serial testing, especially after disease progression, using blood-based ctDNA analysis. This dynamic monitoring approach is essential for identifying patients who become eligible for targeted therapies over time.
A key clinical nuance in CLL is that not all prognostic markers are static. The IGHV mutation status remains unchanged, requiring a one-time test. However, chromosomal abnormalities like deletion 17p can evolve, necessitating re-evaluation at each relapse to guide subsequent therapy choices and adapt the treatment strategy.
Not all mutations are equal. PIK3CA alterations are often present from the start (truncal mutations), indicating a more aggressive cancer. In contrast, ESR1 mutations are typically acquired later as a direct mechanism of resistance to endocrine therapy, making repeat testing after disease progression crucial.
Post-approval studies of the oral SERD elacestrant confirm its clinical benefit in ESR1-mutant breast cancer. However, this real-world evidence also reveals a new insight: patients who have both an ESR1 and a PIK3CA mutation tend to have a shorter time on treatment, suggesting that the PIK3CA mutation may drive resistance to this therapy.
Experts warn against over-interpreting a single negative ctDNA test after surgery, clarifying that these patients still face a significant 25-30% risk of recurrence. The biomarker's true prognostic power comes from serial testing that shows a patient remains persistently negative over time.
Due to selective pressure from first-line treatment, 30-40% of HER2-positive gastroesophageal cancers lose HER2 expression by the time of progression. It is crucial to re-test these patients, either via tissue biopsy or ctDNA, to confirm continued HER2 positivity before initiating second-line HER2-targeted therapy like TDXD.