The SERENA-6 trial showed improved survival by switching therapy upon ctDNA detection of ESR1 mutations. However, it required screening over 3,300 patients to randomize just 315, highlighting the immense scale, cost, and patient drop-off of applying this serial monitoring strategy in standard clinical practice.

Related Insights

In neoadjuvant settings, ctDNA monitoring allows for real-time therapy adjustment. Data from the iSpy platform shows 80% of hormone-positive patients clear ctDNA with half the chemotherapy, enabling de-escalation, while the remaining 20% can be identified for escalated treatment.

ctDNA testing (liquid biopsy) is more effective than tissue biopsy for identifying ESR1 mutations. It samples DNA from all metastatic sites, capturing the disease's genetic heterogeneity and reflecting the most active resistance mechanisms, unlike a single-site needle biopsy which can miss them.

Historically, discussing adjuvant therapy for Stage III colon cancer was quick and straightforward, while Stage II was complex. The advent of ctDNA testing has reversed this dynamic. Stage II decisions are now clearer (treat if positive), while Stage III discussions have become much longer and more nuanced as clinicians integrate ctDNA data with patient preferences.

A study switching therapy based on ctDNA-detected ESR1 mutations revealed patients felt significantly better after the switch, even without visible tumor progression on scans. This counterintuitive finding suggests molecular progression has a subclinical impact on quality of life, supporting proactive, biomarker-driven treatment changes before patients clinically deteriorate.

The practice-changing DYNAMIC trial showed that a ctDNA-guided strategy for stage II colorectal cancer reduces adjuvant chemotherapy use by 50%. Despite this significant de-escalation of treatment, patient outcomes and survival rates were identical to the standard-of-care approach.

The InVigor11 study was the first to show that detecting recurrence via a ctDNA test before it's visible on scans is not just a prognostic sign, but an actionable clinical state. Intervening with therapy at this early stage was proven to improve patient outcomes, establishing a new paradigm for cancer surveillance.

The main barrier to widespread ctDNA use is not its proven ability to predict who will recur (prognostic value). The challenge is the emerging, but not yet definitive, data on its ability to predict a patient's response to a specific therapy (predictive value).

The interpretation of ctDNA is context-dependent. Unlike in the adjuvant setting, in the neoadjuvant setting, remaining ctDNA positive post-treatment signifies that the current therapy has failed. These high-risk patients need a different therapeutic approach, not an extension of the ineffective one.

While a positive ctDNA test clearly signals the need for adjuvant therapy, a negative result is less actionable for deciding initial treatment. The key prognostic value comes from being *serially* undetectable over time, information that is not available when the immediate post-surgery treatment decision must be made.

ctDNA testing does more than identify targetable mutations. The mutant allele fraction provides a quasi-volumetric measure of tumor burden, and its early clearance on therapy (as seen in MONALEESA-3) is a strong prognostic indicator for survival, adding value beyond standard radiographic assessment.

SERENA-6 Trial's Success Hides Massive Logistical Hurdles for Real-World Use | RiffOn