There's a significant gap between AI performance in simulated benchmarks and in the real world. Despite scoring highly on evaluations, AIs in real deployments make "silly mistakes that no human would ever dream of doing," suggesting that current benchmarks don't capture the messiness and unpredictability of reality.
When AI models achieve superhuman performance on specific benchmarks like coding challenges, it doesn't solve real-world problems. This is because we implicitly optimize for the benchmark itself, creating "peaky" performance rather than broad, generalizable intelligence.
AI models show impressive performance on evaluation benchmarks but underwhelm in real-world applications. This gap exists because researchers, focused on evals, create reinforcement learning (RL) environments that mirror test tasks. This leads to narrow intelligence that doesn't generalize, a form of human-driven reward hacking.
An AI agent's failure on a complex task like tax preparation isn't due to a lack of intelligence. Instead, it's often blocked by a single, unpredictable "tiny thing," such as misinterpreting two boxes on a W4 form. This highlights that reliability challenges are granular and not always intuitive.
There's a significant gap between AI performance on structured benchmarks and its real-world utility. A randomized controlled trial (RCT) found that open-source software developers were actually slowed down by 20% when using AI assistants, despite being miscalibrated to believe the tools were helping. This highlights the limitations of current evaluation methods.
Current AI models resemble a student who grinds 10,000 hours on a narrow task. They achieve superhuman performance on benchmarks but lack the broad, adaptable intelligence of someone with less specific training but better general reasoning. This explains the gap between eval scores and real-world utility.
Just as standardized tests fail to capture a student's full potential, AI benchmarks often don't reflect real-world performance. The true value comes from the 'last mile' ingenuity of productization and workflow integration, not just raw model scores, which can be misleading.
Don't trust academic benchmarks. Labs often "hill climb" or game them for marketing purposes, which doesn't translate to real-world capability. Furthermore, many of these benchmarks contain incorrect answers and messy data, making them an unreliable measure of true AI advancement.
Traditional AI benchmarks are seen as increasingly incremental and less interesting. The new frontier for evaluating a model's true capability lies in applied, complex tasks that mimic real-world interaction, such as building in Minecraft (MC Bench) or managing a simulated business (VendingBench), which are more revealing of raw intelligence.
AI models excel at specific tasks (like evals) because they are trained exhaustively on narrow datasets, akin to a student practicing 10,000 hours for a coding competition. While they become experts in that domain, they fail to develop the broader judgment and generalization skills needed for real-world success.
Current AI models exhibit "jagged intelligence," performing at a PhD level on some tasks but failing at simple ones. Google DeepMind's CEO identifies this inconsistency and lack of reliability as a primary barrier to achieving true, general-purpose AGI.