The endgame for CZI's work is hyper-personalized, "N of one" medicine. Instead of the current empirical approach (e.g., trying different antidepressants for months), AI models will simulate an individual's unique biology to predict which specific therapy will work, eliminating guesswork and patient suffering.
The next evolution in personalized medicine will be interoperability between personal and clinical AIs. A patient's AI, rich with daily context, will interface with their doctor's AI, trained on clinical data, to create a shared understanding before the human consultation begins.
The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.
CZI’s mission to cure all diseases is seen as unambitious by AI experts but overly ambitious by biologists. This productive tension forces biologists to pinpoint concrete obstacles and AI experts to grasp data complexity, accelerating the overall pace of innovation.
The traditional drug-centric trial model is failing. The next evolution is trials designed to validate the *decision-making process* itself, using platforms to assign the best therapy to heterogeneous patient groups, rather than testing one drug on a narrow population.
CZI set an audacious goal to cure all disease. When scientists deemed it impossible, CZI's follow-up question, "Why not?" revealed the true bottleneck wasn't funding individual projects, but a systemic lack of shared tools, which then became their core focus.
While most focus on AI for drug discovery, Recursion is building an AI stack for clinical development, where 70% of costs lie. By using real-world data to pinpoint patient locations and causal AI to predict responders, they are improving trial enrollment rates by 1.5x. This demonstrates a holistic, end-to-end AI strategy that addresses bottlenecks across the entire value chain, not just the initial stages.
The next frontier in preclinical research involves feeding multi-omics and spatial data from complex 3D cell models into AI algorithms. This synergy will enable a crucial shift from merely observing biological phenomena to accurately predicting therapeutic outcomes and patient responses.
Profluent CEO Ali Madani frames the history of medicine (like penicillin) as one of random discovery—finding useful molecules in nature. His company uses AI language models to move beyond this "caveman-like" approach. By designing novel proteins from scratch, they are shifting the paradigm from finding a needle in a haystack to engineering the exact needle required.
Following the success of AlphaFold in predicting protein structures, Demis Hassabis says DeepMind's next grand challenge is creating a full AI simulation of a working cell. This 'virtual cell' would allow researchers to test hypotheses about drugs and diseases millions of times faster than in a physical lab.
A major frustration in genetics is finding 'variants of unknown significance' (VUS)—genetic anomalies with no known effect. AI models promise to simulate the impact of these unique variants on cellular function, moving medicine from reactive diagnostics to truly personalized, predictive health.