The concept of using compute waste heat, pioneered by a Bitcoin-mining-heated bathhouse, is now central to AI. New cooling systems are being designed not just to vent heat, but to process it as an energy asset for heat reuse or electricity generation.

Related Insights

Bitcoin mining generates immense heat as a byproduct, which has historically been wasted energy. Now, companies are packaging mining rigs as home heaters. While inefficient for heating, it represents a clever strategy of finding commercial value in operational waste, turning a liability into a potential asset.

AI companies are building their own power plants due to slow utility responses. They overbuild for reliability, and this excess capacity will eventually be sold back to the grid, transforming them into desirable sources of cheap, local energy for communities within five years.

The two largest physical costs for AI data centers—power and cooling—are essentially free and unlimited in space. A satellite can receive constant, intense solar power without needing batteries and use the near-absolute zero of space for cost-free cooling. This fundamentally changes the economic and physical limits of large-scale computation.

For years, the tech industry criticized Bitcoin's energy use. Now, the massive energy needs of AI training have forced Silicon Valley to prioritize energy abundance over purely "green" initiatives. Companies like Meta are building huge natural gas-powered data centers, a major ideological shift.

Contrary to the common focus on chip manufacturing, the immediate bottleneck for building new AI data centers is energy. Factors like power availability, grid interconnects, and high-voltage equipment are the true constraints, forcing companies to explore solutions like on-site power generation.

Bitcoin miners have inadvertently become a key part of the AI infrastructure boom. Their most valuable asset is not their hardware but their pre-existing, large-scale energy contracts. AI companies need this power, forcing partnerships that make miners a valuable pick-and-shovel play on AI.

The CEO of Excelsius argues the traditionally conservative data center sector is ill-prepared for the non-linear innovation demanded by AI. He warns that operators, struggling to keep up, may make "bad decisions" like adopting inadequate single-phase water cooling instead of future-proof two-phase liquid cooling technologies.

The public power grid cannot support the massive energy needs of AI data centers. This will force a shift toward on-site, "behind-the-meter" power generation, likely using natural gas, where data centers generate their own power and only "sip" from the grid during off-peak times.

The conversation about Bitcoin's energy usage often misses a key point. The network doesn't just consume energy; it actively encourages developing underutilized energy sources by monetizing stranded or wasted energy, driving innovation toward a more energy-abundant world.

The astronomical power and cooling needs of AI are pushing major players like SpaceX, Amazon, and Google toward space-based data centers. These leverage constant, intense solar power and near-absolute zero temperatures for cooling, solving the biggest physical limitations of scaling AI on Earth.