A neuroscientist-led startup is growing live neurons on electrodes not just for compute efficiency, but as a platform to discover novel algorithms. By studying how biological networks process information, they identify neuroscience principles that can be used as software plugins to improve current AI models and find successors to the transformer architecture.

Related Insights

While more data and compute yield linear improvements, true step-function advances in AI come from unpredictable algorithmic breakthroughs like Transformers. These creative ideas are the most difficult to innovate on and represent the highest-leverage, yet riskiest, area for investment and research focus.

To achieve 1000x efficiency, Unconventional AI is abandoning the digital abstraction (bits representing numbers) that has defined computing for 80 years. Instead, they are co-designing hardware and algorithms where the physics of the substrate itself defines the neural network, much like a biological brain.

The next major AI breakthrough will come from applying generative models to complex systems beyond human language, such as biology. By treating biological processes as a unique "language," AI could discover novel therapeutics or research paths, leading to a "Move 37" moment in science.

Challenging Neuralink's implant-based BCI, Merge Labs is creating a new paradigm using molecules, proteins, and ultrasound. This less invasive approach aims for higher bandwidth by interfacing with millions of neurons, fundamentally rethinking how to connect brains to machines.

The primary motivation for biocomputing is not just scientific curiosity; it's a direct response to the massive, unsustainable energy consumption of traditional AI. Living neurons are up to 1,000,000 times more energy-efficient, offering a path to dramatically cheaper and greener AI.

The supply chain for neurons is not the main problem; they can be produced easily. The true challenge and next major milestone is "learning in vitro"—discovering the principles to program neural networks to perform consistent, desired computations like recognizing images or executing logic.

FinalSpark’s biocomputing platform abstracts the physical lab work. Researchers from anywhere in the world can interact with living neurons by writing and executing Python code. This code controls electrical stimulation, data collection, and analysis, democratizing access to this frontier technology.

Contrary to sci-fi imagery, the living neurons for biocomputing platforms are not extracted from animals. They are created from commercially available stem cells, which are originally derived from human skin. This process avoids the ethical and practical issues tied to using primary tissue.

Companies like Cortical Labs are growing human brain cells on chips to create energy-efficient biological computers. This radical approach could power future server farms and make personal 'digital twins' feasible by overcoming the massive energy demands of current supercomputers.

There's a qualitative difference between neurons grown in vitro from stem cells and those found in an adult brain. The scientific community discusses whether lab-grown neurons are less mature, like "infant" neurons, and may lack some receptors. The "perfect" neuron for computation is an open research question.

Startup Uses Live Neurons as an 'Algorithm Discovery Platform' for AI | RiffOn