Challenging Neuralink's implant-based BCI, Merge Labs is creating a new paradigm using molecules, proteins, and ultrasound. This less invasive approach aims for higher bandwidth by interfacing with millions of neurons, fundamentally rethinking how to connect brains to machines.
The performance ceiling for non-invasive Brain-Computer Interfaces (BCIs) is rising dramatically, not from better sensors, but from advanced AI. New models can extract high-fidelity signals from noisy data collected outside the skull, potentially making surgical implants like Neuralink unnecessary for sophisticated use cases.
Neuralink is identified as a prime company for wealth creation through employee equity. Having already jumped from a $2B to $10B valuation, its trajectory from medical to consumer brain-computer interfaces suggests another massive growth phase is likely.
Dan Siroker outlines a three-part roadmap for achieving mind emulation: 1) a complete brain map (connectome), now feasible by 2040; 2) sufficient, cheap compute power, estimated to be ready by 2047; and 3) rich behavioral data, which the Limitless pendant is designed to capture.
The sci-fi allure of brain implants and embedded chips often overshadows practical alternatives. Ariel Poler argues that most desired functionalities, from interfacing with AI to carrying identification, can be achieved with less invasive external devices like advanced hearables or wearables, questioning the necessity of risky surgical augmentation for healthy individuals.
The next frontier for Neuralink is "blindsight," restoring vision by stimulating the brain. The primary design challenge isn't just technical; it's creating a useful visual representation with very few "pixels" of neural stimulation. The problem is akin to designing a legible, life-like image using Atari-level graphics.
While current brain-computer interfaces (BCIs) are for medical patients, the timeline for healthy individuals to augment their brains is rapidly approaching. A child who is five years old today might see the first healthy human augmentations before they graduate high school, signaling a near-term, transformative shift for society.
The team obsesses over perfecting the BCI cursor, treating it as the key to user agency on a computer. However, the long-term vision is to eliminate the cursor entirely by reading user intent directly. This creates a fascinating tension of building a masterwork destined for obsolescence.
A "frontier interface" is one where the interaction model is completely unknown. Historically, from light pens to cursors to multi-touch, the physical input mechanism has dictated the entire scope of what a computer can do. Brain-computer interfaces represent the next fundamental shift, moving beyond physical manipulation.
Companies like Cortical Labs are growing human brain cells on chips to create energy-efficient biological computers. This radical approach could power future server farms and make personal 'digital twins' feasible by overcoming the massive energy demands of current supercomputers.
New artificial neurons operate at the same low voltage as human ones (~0.1 volts). This breakthrough eliminates the need for external power sources for prosthetics and brain interfaces, paving the way for seamless, self-powered integration of technology with the human body.