Accusations that hyperscalers "cook the books" by extending GPU depreciation misunderstand hardware lifecycles. Older chips remain at full utilization for less demanding tasks. High operational costs (power, cooling) provide a natural economic incentive to retire genuinely unprofitable hardware, invalidating claims of artificial earnings boosts.

Related Insights

The performance gains from Nvidia's Hopper to Blackwell GPUs come from increased size and power, not efficiency. This signals a potential scaling limit, creating an opportunity for radically new hardware primitives and neural network architectures beyond today's matrix-multiplication-centric models.

When power (watts) is the primary constraint for data centers, the total cost of compute becomes secondary. The crucial metric is performance-per-watt. This gives a massive pricing advantage to the most efficient chipmakers, as customers will pay anything for hardware that maximizes output from their limited power budget.

The narrative of energy being a hard cap on AI's growth is largely overstated. AI labs treat energy as a solvable cost problem, not an insurmountable barrier. They willingly pay significant premiums for faster, non-traditional power solutions because these extra costs are negligible compared to the massive expense of GPUs.

The plateauing performance-per-watt of GPUs suggests that simply scaling current matrix multiplication-heavy architectures is unsustainable. This hardware limitation may necessitate research into new computational primitives and neural network designs built for large-scale distributed systems, not single devices.

Top-tier kernels like FlashAttention are co-designed with specific hardware (e.g., H100). This tight coupling makes waiting for future GPUs an impractical strategy. The competitive edge comes from maximizing the performance of available hardware now, even if it means rewriting kernels for each new generation.

Hyperscalers are extending depreciation schedules for AI hardware. While this may look like "cooking the books" to inflate earnings, it's justified by the reality that even 7-8 year old TPUs and GPUs are still running at 100% utilization for less complex AI tasks, making them valuable for longer and validating the accounting change.

The debate over AI chip depreciation highlights a flaw in traditional accounting. GAAP was designed for physical assets with predictable lifecycles, not for digital infrastructure like GPUs whose value creation is dynamic. This mismatch leads to accusations of financial manipulation where firms are simply following outdated rules.

NVIDIA’s business model relies on planned obsolescence. Its AI chips become obsolete every 2-3 years as new versions are released, forcing Big Tech customers into a constant, multi-billion dollar upgrade cycle for what are effectively "perishable" assets.

The AI infrastructure boom is a potential house of cards. A single dollar of end-user revenue paid to a company like OpenAI can become $8 of "seeming revenue" as it cascades through the value chain to Microsoft, CoreWeave, and NVIDIA, supporting an unsustainable $100 of equity market value.

The narrative of endless demand for NVIDIA's high-end GPUs is flawed. It will be cracked by two forces: the shift of AI inference to on-device flash memory, reducing cloud reliance, and Google's ability to give away its increasingly powerful Gemini AI for free, undercutting the revenue models that fuel GPU demand.