A major frontier for AI in science is developing 'taste'—the human ability to discern not just if a research question is solvable, but if it is genuinely interesting and impactful. Models currently struggle to differentiate an exciting result from a boring one.
Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.
An attempt to teach AI 'scientific taste' using RLHF on hypotheses failed because human raters prioritized superficial qualities like tone and feasibility over a hypothesis's potential world-changing impact. This suggests a need for feedback tied to downstream outcomes, not just human preference.
In high-stakes fields like pharma, AI's ability to generate more ideas (e.g., drug targets) is less valuable than its ability to aid in decision-making. Physical constraints on experimentation mean you can't test everything. The real need is for tools that help humans evaluate, prioritize, and gain conviction on a few key bets.
AI performs poorly in areas where expertise is based on unwritten 'taste' or intuition rather than documented knowledge. If the correct approach doesn't exist in training data or isn't explicitly provided by human trainers, models will inevitably struggle with that particular problem.
To make genuine scientific breakthroughs, an AI needs to learn the abstract reasoning strategies and mental models of expert scientists. This involves teaching it higher-level concepts, such as thinking in terms of symmetries, a core principle in physics that current models lack.
The ultimate goal isn't just modeling specific systems (like protein folding), but automating the entire scientific method. This involves AI generating hypotheses, choosing experiments, analyzing results, and updating a 'world model' of a domain, creating a continuous loop of discovery.
A study found evaluators rated AI-generated research ideas as better than those from grad students. However, when the experiments were conducted, human ideas produced superior results. This highlights a bias where we may favor AI's articulate proposals over more substantively promising human intuition.
Current LLMs fail at science because they lack the ability to iterate. True scientific inquiry is a loop: form a hypothesis, conduct an experiment, analyze the result (even if incorrect), and refine. AI needs this same iterative capability with the real world to make genuine discoveries.
The best AI models are trained on data that reflects deep, subjective qualities—not just simple criteria. This "taste" is a key differentiator, influencing everything from code generation to creative writing, and is shaped by the values of the frontier lab.
AI's key advantage isn't superior intelligence but the ability to brute-force enumerate and then rapidly filter a vast number of hypotheses against existing literature and data. This systematic, high-volume approach uncovers novel insights that intuition-driven human processes might miss.