To make genuine scientific breakthroughs, an AI needs to learn the abstract reasoning strategies and mental models of expert scientists. This involves teaching it higher-level concepts, such as thinking in terms of symmetries, a core principle in physics that current models lack.
Reinforcement learning incentivizes AIs to find the right answer, not just mimic human text. This leads to them developing their own internal "dialect" for reasoning—a chain of thought that is effective but increasingly incomprehensible and alien to human observers.
The ambitious goal of discovering a high-temperature superconductor isn't just a scientific target; it's a strategic choice. Achieving it requires building numerous sub-systems like autonomous synthesis and characterization, effectively forcing the creation of a general-purpose AI for science platform.
Language is just one 'keyhole' into intelligence. True artificial general intelligence (AGI) requires 'world modeling'—a spatial intelligence that understands geometry, physics, and actions. This capability to represent and interact with the state of the world is the next critical phase of AI development beyond current language models.
Today's AI models are powerful but lack a true sense of causality, leading to illogical errors. Unconventional AI's Naveen Rao hypothesizes that building AI on substrates with inherent time and dynamics—mimicking the physical world—is the key to developing this missing causal understanding.
Current AI can learn to predict complex patterns, like planetary orbits, from data. However, it struggles to abstract the underlying causal laws, such as Newtonian physics (F=MA). This leap to a higher level of abstraction remains a fundamental challenge beyond simple pattern recognition.
Dr. Fei-Fei Li cites the deduction of DNA's double-helix structure as a prime example of a cognitive leap that required deep spatial and geometric reasoning—a feat impossible with language alone. This illustrates that future AI systems will need world-modeling capabilities to achieve similar breakthroughs and augment human scientific discovery.
While a world model can generate a physically plausible arch, it doesn't understand the underlying physics of force distribution. This gap between pattern matching and causal reasoning is a fundamental split between AI and human intelligence, making current models unsuitable for mission-critical applications like architecture.
AI is developing spatial reasoning that approaches human levels. This will enable it to solve novel physics problems, leading to breakthroughs that create entirely new classes of technology, much like discoveries in the 1940s led to GPS and cell phones.
Current LLMs fail at science because they lack the ability to iterate. True scientific inquiry is a loop: form a hypothesis, conduct an experiment, analyze the result (even if incorrect), and refine. AI needs this same iterative capability with the real world to make genuine discoveries.
The next leap in AI will come from integrating general-purpose reasoning models with specialized models for domains like biology or robotics. This fusion, creating a "single unified intelligence" across modalities, is the base case for achieving superintelligence.