Arguments that AI chips are viable for 5-7 years because they still function are misleading. This "sleight of hand" confuses physical durability with economic usefulness. An older chip is effectively worthless if newer models offer exponentially better performance for the price ('dollar per flop'), making it uncompetitive.
The call for a "federal backstop" isn't about saving a failing company, but de-risking loans for data centers filled with expensive GPUs that quickly become obsolete. Unlike durable infrastructure like railroads, the short shelf-life of chips makes lenders hesitant without government guarantees on the financing.
The sustainability of the AI infrastructure boom is debated. One view is that GPUs depreciate rapidly in five years, making current spending speculative. The counterargument is that older chips will have a long, valuable life serving less complex models, akin to mainframes, making them a more durable capital investment.
The massive investment in data centers isn't just a bet on today's models. As AI becomes more efficient, smaller yet powerful models will be deployed on older hardware. This extends the serviceable life and economic return of current infrastructure, ensuring today's data centers will still generate value years from now.
While the industry standard is a six-year depreciation for data center hardware, analyst Dylan Patel warns this is risky for GPUs. Rapid annual performance gains from new models could render older chips economically useless long before they physically fail.
Hyperscalers are extending depreciation schedules for AI hardware. While this may look like "cooking the books" to inflate earnings, it's justified by the reality that even 7-8 year old TPUs and GPUs are still running at 100% utilization for less complex AI tasks, making them valuable for longer and validating the accounting change.
Hyperscalers face a strategic challenge: building massive data centers with current chips (e.g., H100) risks rapid depreciation as far more efficient chips (e.g., GB200) are imminent. This creates a 'pause' as they balance fulfilling current demand against future-proofing their costly infrastructure.
The useful life of an AI chip isn't a fixed period. It ends only when a new generation offers such a significant performance and efficiency boost that it becomes more economical to replace fully paid-off, older hardware. Slower generational improvements mean longer depreciation cycles.
Unlike railroads or telecom, where infrastructure lasts for decades, the core of AI infrastructure—semiconductor chips—becomes obsolete every 3-4 years. This creates a cycle of massive, recurring capital expenditure to maintain data centers, fundamentally changing the long-term ROI calculation for the AI arms race.
Unlike the railroad or fiber optic booms which created assets with multi-decade utility, today's AI infrastructure investment is in chips with a short useful life. Because they become obsolete quickly due to efficiency gains, they're more like perishable goods ('bananas') than permanent infrastructure, changing the long-term value calculation of this capex cycle.
Accusations that hyperscalers "cook the books" by extending GPU depreciation misunderstand hardware lifecycles. Older chips remain at full utilization for less demanding tasks. High operational costs (power, cooling) provide a natural economic incentive to retire genuinely unprofitable hardware, invalidating claims of artificial earnings boosts.