Instead of simulating photorealistic worlds, robotics firm Flexion trains its models on simplified, abstract representations. For example, it uses perception models like Segment Anything to 'paint' a door red and its handle green. By training on this simplified abstraction, the robot learns the core task (opening doors) in a way that generalizes across all real-world doors, bypassing the need for perfect simulation.
GI is not trying to solve robotics in general. Their strategy is to focus on robots whose actions can be mapped to a game controller. This constraint dramatically simplifies the problem, allowing their foundation models trained on gaming data to be directly applicable, shifting the burden for robotics companies from expensive pre-training to more manageable fine-tuning.
Large language models are insufficient for tasks requiring real-world interaction and spatial understanding, like robotics or disaster response. World models provide this missing piece by generating interactive, reason-able 3D environments. They represent a foundational shift from language-based AI to a more holistic, spatially intelligent AI.
Beyond supervised fine-tuning (SFT) and human feedback (RLHF), reinforcement learning (RL) in simulated environments is the next evolution. These "playgrounds" teach models to handle messy, multi-step, real-world tasks where current models often fail catastrophically.
Physical Intelligence demonstrated an emergent capability where its robotics model, after reaching a certain performance threshold, significantly improved by training on egocentric human video. This solves a major bottleneck by leveraging vast, existing video datasets instead of expensive, limited teleoperated data.
The choice between simulation and real-world data depends on a task's core difficulty. For locomotion, complex reactive behavior is harder to capture than simple ground physics, favoring simulation. For manipulation, complex object physics are harder to simulate than simple grasping behaviors, favoring real-world data.
The AI's ability to handle novel situations isn't just an emergent property of scale. Waive actively trains "world models," which are internal generative simulators. This enables the AI to reason about what might happen next, leading to sophisticated behaviors like nudging into intersections or slowing in fog.
As reinforcement learning (RL) techniques mature, the core challenge shifts from the algorithm to the problem definition. The competitive moat for AI companies will be their ability to create high-fidelity environments and benchmarks that accurately represent complex, real-world tasks, effectively teaching the AI what matters.
Instead of relying on digital proxies like code graders, Periodic Labs uses real-world lab experiments as the ultimate reward function. Nature itself becomes the reinforcement learning environment, ensuring the AI is optimized against physical reality, not flawed simulations.
The "bitter lesson" (scale and simple models win) works for language because training data (text) aligns with the output (text). Robotics faces a critical misalignment: it's trained on passive web videos but needs to output physical actions in a 3D world. This data gap is a fundamental hurdle that pure scaling cannot solve.
Unlike older robots requiring precise maps and trajectory calculations, new robots use internet-scale common sense and learn motion by mimicking humans or simulations. This combination has “wiped the slate clean” for what is possible in the field.