The founders initially feared their data collection hardware would be easily copied. However, they discovered the true challenge and defensible moat lay in scaling the full-stack system—integrating hardware iterations, data pipelines, and training loops. The unexpected difficulty of this process created a powerful competitive advantage.
The robotics field has a scalable recipe for AI-driven manipulation (like GPT), but hasn't yet scaled it into a polished, mass-market consumer product (like ChatGPT). The current phase focuses on scaling data and refining systems, not just fundamental algorithm discovery, to bridge this gap.
General-purpose robotics lacks standardized interfaces between hardware, data, and AI. This makes a full-stack, in-house approach essential because the definition of 'good' for each component is constantly co-evolving. Partnering is difficult when your standard of quality is a moving target.
Classical robots required expensive, rigid, and precise hardware because they were blind. Modern AI perception acts as 'eyes', allowing robots to correct for inaccuracies in real-time. This enables the use of cheaper, compliant, and inherently safer mechanical components, fundamentally changing hardware design philosophy.
The adoption of powerful AI architectures like transformers in robotics was bottlenecked by data quality, not algorithmic invention. Only after data collection methods improved to capture more dexterous, high-fidelity human actions did these advanced models become effective, reversing the typical 'algorithm-first' narrative of AI progress.
Previously, imitation learning required a single expert to collect perfectly consistent data, a major bottleneck. Diffusion models unlocked the ability to train on multi-modal data from various non-expert collectors, shifting the challenge from finding niche experts to building scalable data acquisition and processing systems.
The choice between simulation and real-world data depends on a task's core difficulty. For locomotion, complex reactive behavior is harder to capture than simple ground physics, favoring simulation. For manipulation, complex object physics are harder to simulate than simple grasping behaviors, favoring real-world data.
