Jensen Huang forecasts that the next major AI breakthrough will be in digital biology. He believes advances in multimodality, long context models, and synthetic data will converge to create a "ChatGPT moment," enabling the generation of novel proteins and chemicals.

Related Insights

Jensen Huang argues the "AI bubble" framing is too narrow. The real trend is a permanent shift from general-purpose to accelerated computing, driven by the end of Moore's Law. This shift powers not just chatbots, but multi-billion dollar AI applications in automotive, digital biology, and financial services.

Powerful AI models for biology exist, but the industry lacks a breakthrough user interface—a "ChatGPT for science"—that makes them accessible, trustworthy, and integrated into wet lab scientists' workflows. This adoption and translation problem is the biggest hurdle, not the raw capability of the AI models themselves.

The combination of AI reasoning and robotic labs could create a new model for biotech entrepreneurship. It enables individual scientists with strong ideas to test hypotheses and generate data without raising millions for a physical lab and staff, much like cloud computing lowered the barrier for software startups.

Jensen Huang criticizes the focus on a monolithic "God AI," calling it an unhelpful sci-fi narrative. He argues this distracts from the immediate and practical need to build diverse, specialized AIs for specific domains like biology, finance, and physics, which have unique problems to solve.

The next major AI breakthrough will come from applying generative models to complex systems beyond human language, such as biology. By treating biological processes as a unique "language," AI could discover novel therapeutics or research paths, leading to a "Move 37" moment in science.

The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.

The most significant breakthroughs will no longer come from traditional wet lab experiments alone. Instead, progress will be driven by the smarter application of AI and simulations, with future bioreactors being as much digital as they are physical.

Following the success of AlphaFold in predicting protein structures, Demis Hassabis says DeepMind's next grand challenge is creating a full AI simulation of a working cell. This 'virtual cell' would allow researchers to test hypotheses about drugs and diseases millions of times faster than in a physical lab.

Countering the narrative of insurmountable training costs, Jensen Huang argues that architectural, algorithmic, and computing stack innovations are driving down AI costs far faster than Moore's Law. He predicts a billion-fold cost reduction for token generation within a decade.

The founder of AI and robotics firm Medra argues that scientific progress is not limited by a lack of ideas or AI-generated hypotheses. Instead, the critical constraint is the physical capacity to test these ideas and generate high-quality data to train better AI models.