The most powerful rocket fuels (cryogenics) are not storable in space as they boil away when exposed to sunlight. Orbital Operations is commercializing an active refrigeration system to solve this, enabling reusable, high-thrust vehicles that can wait in orbit for missions.
Reusable rockets will efficiently deliver payloads to Low Earth Orbit (LEO), where specialized "space tugs" will then take over for the final, more efficient journey to higher orbits. This creates a new, more economical layer of in-space transportation infrastructure.
From a first-principles perspective, space is the ideal location for data centers. It offers free, constant solar power (6x more irradiance) and free cooling via radiators facing deep space. This eliminates the two biggest terrestrial constraints and costs, making it a profound long-term shift for AI infrastructure.
Unlike on Earth, where atmospheric drag makes electromagnetic launchers (mass drivers) impractical, the Moon's vacuum environment makes them highly efficient. This technology could turn the Moon into a "train station" for the solar system, launching raw materials and goods to Mars at a fraction of the energy cost.
The core scientific challenge in cryopreservation isn't achieving low temperatures, but avoiding the formation of ice. When water freezes, it expands and shatters cells. The goal is vitrification: cooling tissue so rapidly that it turns into a stable, glass-like state without forming destructive ice crystals.
The two largest physical costs for AI data centers—power and cooling—are essentially free and unlimited in space. A satellite can receive constant, intense solar power without needing batteries and use the near-absolute zero of space for cost-free cooling. This fundamentally changes the economic and physical limits of large-scale computation.
While space offers abundant solar power, the common belief that cooling is "free" is a misconception. Dissipating processor heat is extremely difficult in a vacuum without a medium for convection, making it a significant material science and physics problem, not a simple passive process.
During the Apollo era, NASA debated two moonshot strategies: a single, massive rocket for a direct launch versus a logistics-focused approach with in-orbit refueling. While direct launch won at the time, today's strategy for Mars has reverted to the refueling concept as the more sustainable and scalable long-term solution.
Fusion reactors on Earth require massive, expensive vacuum chambers. Zephyr Fusion's core insight is to build its reactor in space, leveraging the perfect vacuum that already exists for free. This first-principles approach sidesteps a primary engineering and cost hurdle, potentially making fusion a more commercially viable energy source.
To bypass the complexity of transferring cryogenic fuels in space, Orbital Operations' vehicles will be refueled with simple tanks of water. An onboard electrolysis system will then split the H2O into storable hydrogen and oxygen propellants, dramatically simplifying logistics.
The astronomical power and cooling needs of AI are pushing major players like SpaceX, Amazon, and Google toward space-based data centers. These leverage constant, intense solar power and near-absolute zero temperatures for cooling, solving the biggest physical limitations of scaling AI on Earth.