When building Spiral, a single large language model trying to both interview the user and write content failed due to "context rot." The solution was a multi-agent system where an "interviewer" agent hands off the full context to a separate "writer" agent, improving performance and reliability.
Multi-agent systems work well for easily parallelizable, "read-only" tasks like research, where sub-agents gather context independently. They are much trickier for "write" tasks like coding, where conflicting decisions between agents create integration problems.
Building a single, all-purpose AI is like hiring one person for every company role. To maximize accuracy and creativity, build multiple custom GPTs, each trained for a specific function like copywriting or operations, and have them collaborate.
Long, continuous AI chat threads degrade output quality as the context window fills up, making it harder for the model to recall early details. To maintain high-quality results, treat each discrete feature or task as a new chat, ensuring the agent has a clean, focused context for each job.
Don't fear deploying a specialized, multi-agent customer experience. Even if a customer interacts with several different AI agents, it's superior to being bounced between human agents who lose context. Each AI agent can retain the full conversation history, providing a more coherent and efficient experience.
To improve the quality and accuracy of an AI agent's output, spawn multiple sub-agents with competing or adversarial roles. For example, a code review agent finds bugs, while several "auditor" agents check for false positives, resulting in a more reliable final analysis.
Separating AI agents into distinct roles (e.g., a technical expert and a customer-facing communicator) mirrors real-world team specializations. This allows for tailored configurations, like different 'temperature' settings for creativity versus accuracy, improving overall performance and preventing role confusion.
Instead of relying on a single, all-purpose coding agent, the most effective workflow involves using different agents for their specific strengths. For example, using the 'Friday' agent for UI tasks, 'Charlie' for code reviews, and 'Claude Code' for research and backend logic.
While chat works for human-AI interaction, the infinite canvas is a superior paradigm for multi-agent and human-AI collaboration. It allows for simultaneous, non-distracting parallel work, asynchronous handoffs, and persistent spatial context—all of which are difficult to achieve in a linear, turn-based chat interface.
Replit's leap in AI agent autonomy isn't from a single superior model, but from orchestrating multiple specialized agents using models from various providers. This multi-agent approach creates a different, faster scaling paradigm for task completion compared to single-model evaluations, suggesting a new direction for agent research.
The simple "tool calling in a loop" model for agents is deceptive. Without managing context, token-heavy tool calls quickly accumulate, leading to high costs ($1-2 per run), hitting context limits, and performance degradation known as "context rot."