Andrej Karpathy's 'Software 2.0' framework posits that AI automates tasks that are easily *verifiable*. This explains the 'jagged frontier' of AI progress: fields like math and code, where correctness is verifiable, advance rapidly. In contrast, creative and strategic tasks, where success is subjective and hard to verify, lag significantly behind.
While more data and compute yield linear improvements, true step-function advances in AI come from unpredictable algorithmic breakthroughs like Transformers. These creative ideas are the most difficult to innovate on and represent the highest-leverage, yet riskiest, area for investment and research focus.
AI excels where success is quantifiable (e.g., code generation). Its greatest challenge lies in subjective domains like mental health or education. Progress requires a messy, societal conversation to define 'success,' not just a developer-built technical leaderboard.
AI intelligence shouldn't be measured with a single metric like IQ. AIs exhibit "jagged intelligence," being superhuman in specific domains (e.g., mastering 200 languages) while simultaneously lacking basic capabilities like long-term planning, making them fundamentally unlike human minds.
The advancement of AI is not linear. While the industry anticipated a "year of agents" for practical assistance, the most significant recent progress has been in specialized, academic fields like competitive mathematics. This highlights the unpredictable nature of AI development.
Software engineering is a prime target for AI because code provides instant feedback (it works or it doesn't). In contrast, fields like medicine have slow, expensive feedback loops (e.g., clinical trials), which throttles the pace of AI-driven iteration and adoption. This heuristic predicts where AI will make the fastest inroads.
If AI were perfect, it would simply replace tasks. Because it is imperfect and requires nuanced interaction, it creates demand for skilled professionals who can prompt, verify, and creatively apply it. This turns AI's limitations into a tool that requires and rewards human proficiency.
AI can produce scientific claims and codebases thousands of times faster than humans. However, the meticulous work of validating these outputs remains a human task. This growing gap between generation and verification could create a backlog of unproven ideas, slowing true scientific advancement.
The true exponential acceleration towards AGI is currently limited by a human bottleneck: our speed at prompting AI and, more importantly, our capacity to manually validate its work. The hockey stick growth will only begin when AI can reliably validate its own output, closing the productivity loop.
AI models excel at specific tasks (like evals) because they are trained exhaustively on narrow datasets, akin to a student practicing 10,000 hours for a coding competition. While they become experts in that domain, they fail to develop the broader judgment and generalization skills needed for real-world success.
We perceive complex math as a pinnacle of intelligence, but for AI, it may be an easier problem than tasks we find trivial. Like chess, which computers mastered decades ago, solving major math problems might not signify human-level reasoning but rather that the domain is surprisingly susceptible to computational approaches.