The computational power for modern AI wasn't developed for AI research. Massive consumer demand for high-end gaming GPUs created the powerful, parallel processing hardware that researchers later realized was perfect for training neural networks, effectively subsidizing the AI boom.
While purpose-built chips (ASICs) like Google's TPU are efficient, the AI industry is still in an early, experimental phase. GPUs offer the programmability and flexibility needed to develop new algorithms, as ASICs risk being hard-coded for models that quickly become obsolete.
The 2012 breakthrough that ignited the modern AI era used the ImageNet dataset, a novel neural network, and only two NVIDIA gaming GPUs. This demonstrates that foundational progress can stem from clever architecture and the right data, not just massive initial compute power, a lesson often lost in today's scale-focused environment.
The progress in deep learning, from AlexNet's GPU leap to today's massive models, is best understood as a history of scaling compute. This scaling, resulting in a million-fold increase in power, enabled the transition from text to more data-intensive modalities like vision and spatial intelligence.
The progression from early neural networks to today's massive models is fundamentally driven by the exponential increase in available computational power, from the initial move to GPUs to today's million-fold increases in training capacity on a single model.
New AI models are designed to perform well on available, dominant hardware like NVIDIA's GPUs. This creates a self-reinforcing cycle where the incumbent hardware dictates which model architectures succeed, making it difficult for superior but incompatible chip designs to gain traction.
Nvidia dominates AI because its GPU architecture was perfect for the new, highly parallel workload of AI training. Market leadership isn't just about having the best chip, but about having the right architecture at the moment a new dominant computing task emerges.
The massive demand for GPUs from the crypto market provided a critical revenue stream for companies like NVIDIA during a slow period. This accelerated the development of the powerful parallel processing hardware that now underpins modern AI models.
The exponential growth in AI required moving beyond single GPUs. Mellanox's interconnect technology was critical for scaling to thousands of GPUs, effectively turning the entire data center into a single, high-performance computer and solving the post-Moore's Law scaling challenge.
AI's computational needs are not just from initial training. They compound exponentially due to post-training (reinforcement learning) and inference (multi-step reasoning), creating a much larger demand profile than previously understood and driving a billion-X increase in compute.
The fundamental unit of AI compute has evolved from a silicon chip to a complete, rack-sized system. According to Nvidia's CTO, a single 'GPU' is now an integrated machine that requires a forklift to move, a crucial mindset shift for understanding modern AI infrastructure scale.