When building systems with hundreds of thousands of GPUs and millions of components, it's a statistical certainty that something is always broken. Therefore, hardware and software must be architected from the ground up to handle constant, inevitable failures while maintaining performance and service availability.
The fundamental unit of AI compute has evolved from a silicon chip to a complete, rack-sized system. According to Nvidia's CTO, a single 'GPU' is now an integrated machine that requires a forklift to move, a crucial mindset shift for understanding modern AI infrastructure scale.
Unlike simple classification (one pass), generative AI performs recursive inference. Each new token (word, pixel) requires a full pass through the model, turning a single prompt into a series of demanding computations. This makes inference a major, ongoing driver of GPU demand, rivaling training.
The exponential growth in AI required moving beyond single GPUs. Mellanox's interconnect technology was critical for scaling to thousands of GPUs, effectively turning the entire data center into a single, high-performance computer and solving the post-Moore's Law scaling challenge.
By running infrastructure tasks on a separate computing platform (the Bluefield DPU), Nvidia isolates the data center's operating system from tenant applications on GPUs. This prevents vulnerabilities from crossing over, significantly hardening the system against side-channel attacks and other cyber threats.
When splitting jobs across thousands of GPUs, inconsistent communication times (jitter) create bottlenecks, forcing the use of fewer GPUs. A network with predictable, uniform latency enables far greater parallelization and overall cluster efficiency, making it more important than raw 'hero number' bandwidth.
