Two powerful trends are converging: solar panel costs have plummeted, making them cheaper than IKEA furniture for construction, while AI, data centers, and EVs create unprecedented energy demand. This creates a massive opportunity for large-scale solar projects in energy-strained regions like the Philippines.
Base's core thesis is that the shift to solar and battery storage is inevitable not because of ESG trends, but because it represents the lowest marginal cost to add power to the grid. This economic argument is more fundamental and compelling than climate narratives alone.
The AI boom is not a universal positive for all energy sources. The need for a resilient, 24/7 power grid for AI data centers increases reliance on stable fossil fuels and battery storage to balance the intermittency of renewables. This dynamic is creating rising costs for pure-play solar and wind producers.
The race to build power infrastructure for AI may lead to an oversupply if adoption follows a sigmoid curve. This excess capacity, much like the post-dot-com broadband glut, could become a positive externality that significantly lowers future energy prices for all consumers.
Beyond algorithms and talent, China's key advantage in the AI race is its massive investment in energy infrastructure. While the U.S. grid struggles, China is adding 10x more solar capacity and building 33 nuclear plants, ensuring it will have the immense power required to train and run future AI models at scale.
Poorer countries, unburdened by legacy fossil fuel infrastructure, have a unique advantage. They can bypass the dirty development path of wealthy nations and build their energy systems directly on cheaper, more efficient renewable technologies, potentially achieving energy security and economic growth faster.
The mass adoption of electrification technologies like Calcetra's thermal battery is enabled by pure economics. Solar and wind are now the cheapest forms of power generation. This market reality creates a powerful, capitalism-driven tailwind for new technologies, independent of climate change belief or government policy.
The cost of electricity has two components: making it and moving it. Generation ("making") costs are plummeting due to cheap solar. However, transmission ("moving") costs are rising from aging infrastructure. This indicates the biggest area for innovation is in distribution, not generation.
Soaring power consumption from AI is widening the "power spread"—the difference between the cost to generate electricity and its selling price. This projected 15% expansion in profit margins will significantly boost earnings for power generation companies, creating massive value across the supply chain.
The political challenge of climate action has fundamentally changed. Renewables like solar and wind are no longer expensive sacrifices but the cheapest energy sources available. This aligns short-term economic incentives with long-term environmental goals, making the transition politically and financially viable.
Most of the world's energy capacity build-out over the next decade was planned using old models, completely omitting the exponential power demands of AI. This creates a looming, unpriced-in bottleneck for AI infrastructure development that will require significant new investment and planning.