Soaring power consumption from AI is widening the "power spread"—the difference between the cost to generate electricity and its selling price. This projected 15% expansion in profit margins will significantly boost earnings for power generation companies, creating massive value across the supply chain.

Related Insights

While currently straining power grids, AI data centers have the potential to become key stabilizing partners. By coordinating their massive power draw—for example, giving notice before ending a training run—they can help manage grid load and uncertainty, ultimately reducing overall system costs and improving stability in a decentralized energy network.

When power (watts) is the primary constraint for data centers, the total cost of compute becomes secondary. The crucial metric is performance-per-watt. This gives a massive pricing advantage to the most efficient chipmakers, as customers will pay anything for hardware that maximizes output from their limited power budget.

To overcome energy bottlenecks, political opposition, and grid reliability issues, AI data center developers are building their own dedicated, 'behind-the-meter' power plants. This strategy, typically using natural gas, ensures a stable power supply for their massive operations without relying on the public grid.

The AI boom is not a universal positive for all energy sources. The need for a resilient, 24/7 power grid for AI data centers increases reliance on stable fossil fuels and battery storage to balance the intermittency of renewables. This dynamic is creating rising costs for pure-play solar and wind producers.

While AI models and coding agents scale to $100M+ revenues quickly, the truly exponential growth is in the hardware ecosystem. Companies in optical interconnects, cooling, and power are scaling from zero to billions in revenue in under two years, driven by massive demand from hyperscalers building AI infrastructure.

Credit investors should look beyond direct AI companies. According to Victoria Fernandez, the massive infrastructure build-out for AI creates a significant tailwind for power and energy companies, offering a less crowded investment thesis with potentially wider spreads and strong fundamentals.

The International Energy Agency projects global data center electricity use will reach 945 TWH by 2030. This staggering figure is almost twice the current annual consumption of an industrialized nation like Germany, highlighting an unprecedented energy demand from a single tech sector and making energy the primary bottleneck for AI growth.

The rapid build-out of data centers to power AI is consuming so much energy that it's creating a broad, national increase in electricity costs. This trend is now a noticeable factor contributing to CPI inflation and is expected to persist.

Most of the world's energy capacity build-out over the next decade was planned using old models, completely omitting the exponential power demands of AI. This creates a looming, unpriced-in bottleneck for AI infrastructure development that will require significant new investment and planning.

The primary factor for siting new AI hubs has shifted from network routes and cheap land to the availability of stable, large-scale electricity. This creates "strategic electricity advantages" where regions with reliable grids and generation capacity are becoming the new epicenters for AI infrastructure, regardless of their prior tech hub status.