Unlike LLMs, parameter count is a misleading metric for AI models in structural biology. These models have fewer than a billion parameters but are more computationally expensive to run due to cubic operations that model pairwise interactions, making inference cost the key bottleneck.

Related Insights

Instead of building from scratch, ProPhet leverages existing transformer models to create unique mathematical 'languages' for proteins and molecules. Their core innovation is an additional model that translates between them, creating a unified space to predict interactions at scale.

A key strategy for improving results from generative protein models is "inference-time scaling." This involves generating a vast number of potential structures and then using a separate, fine-tuned scoring model to rank them. This search-and-rank process uncovers high-quality solutions the model might otherwise miss.

The model uses a Mixture-of-Experts (MoE) architecture with over 200 billion parameters, but only activates a "sparse" 10 billion for any given task. This design provides the knowledge base of a massive model while keeping inference speed and cost comparable to much smaller models.

Performance on knowledge-intensive benchmarks correlates strongly with an MoE model's total parameter count, not its active parameter count. With leading models like Kimi K2 reportedly using only ~3% active parameters, this suggests there is significant room to increase sparsity and efficiency without degrading factual recall.

Contrary to trends in other AI fields, structural biology problems are not yet dominated by simple, scaled-up transformers. Specialized architectures that bake in physical priors, like equivariance, still yield vastly superior performance, as the domain's complexity requires strong inductive biases.

Current AI for protein engineering relies on small public datasets like the PDB (~10,000 structures), causing models to "hallucinate" or default to known examples. This data bottleneck, orders of magnitude smaller than data used for LLMs, hinders the development of novel therapeutics.

Chinese AI models like Kimi achieve dramatic cost reductions through specific architectural choices, not just scale. Using a "mixture of experts" design, they only utilize a fraction of their total parameters for any given task, making them far more efficient to run than the "dense" models common in the West.

While acknowledging the power of Large Language Models (LLMs) for linear biological data like protein sequences, CZI's strategy recognizes that biological processes are highly multidimensional and non-linear. The organization is focused on developing new types of AI that can accurately model this complexity, moving beyond the one-dimensional, sequential nature of language-based models.

Data from benchmarks shows an MoE model's performance is more correlated with its total parameter count than its active parameter count. With models like Kimi K2 running at just 3% active parameters, this suggests there is still significant room to increase sparsity and efficiency.

Traditional science failed to create equations for complex biological systems because biology is too "bespoke." AI succeeds by discerning patterns from vast datasets, effectively serving as the "language" for modeling biology, much like mathematics is the language of physics.