Generative AI alone designs proteins that look correct on paper but often fail in the lab. DenovAI adds a physics layer to simulate molecular dynamics—the "jiggling and wiggling"—which weeds out false positives by modeling how proteins actually interact in the real world.
To evolve AI from pattern matching to understanding physics for protein engineering, structural data is insufficient. Models need physical parameters like Gibbs free energy (delta-G), obtainable from affinity measurements, to become truly predictive and transformative for therapeutic development.
Unlike traditional methods that simulate physical interactions like a key in a lock, ProPhet's AI learns the fundamental patterns governing why certain molecules and proteins interact. This allows for prediction without needing slow, expensive, and often impossible physical or computational simulations.
Traditional drug discovery separates finding a 'hit' from the long process of optimizing it into a drug candidate. DenovAI's 'one-shot' platform builds in advanced features from the start, collapsing a multi-year, disjointed process into a single, efficient design phase.
Instead of building from scratch, ProPhet leverages existing transformer models to create unique mathematical 'languages' for proteins and molecules. Their core innovation is an additional model that translates between them, creating a unified space to predict interactions at scale.
DE Shaw Research (DESRES) invested heavily in custom silicon for molecular dynamics (MD) to solve protein folding. In contrast, DeepMind's AlphaFold, using ML on experimental data, solved it on commodity hardware. This demonstrates data-driven approaches can be vastly more effective than brute-force simulation for complex scientific problems.
Current AI for protein engineering relies on small public datasets like the PDB (~10,000 structures), causing models to "hallucinate" or default to known examples. This data bottleneck, orders of magnitude smaller than data used for LLMs, hinders the development of novel therapeutics.
To ensure scientific validity and mitigate the risk of AI hallucinations, a hybrid approach is most effective. By combining AI's pattern-matching capabilities with traditional physics-based simulation methods, researchers can create a feedback loop where one system validates the other, increasing confidence in the final results.
Instead of screening billions of nature's existing proteins (a search problem), AI-powered de novo design creates entirely new proteins for specific functions from scratch. This moves the paradigm from hoping to find a match to intentionally engineering the desired molecule.
John Jumper uses an analogy to explain the leap in complexity from prediction to design. Predicting a protein's structure is like recognizing a bicycle's parts. Designing a new, functional protein is like building a working bicycle—requiring every detail to be correct.
Following the success of AlphaFold in predicting protein structures, Demis Hassabis says DeepMind's next grand challenge is creating a full AI simulation of a working cell. This 'virtual cell' would allow researchers to test hypotheses about drugs and diseases millions of times faster than in a physical lab.