While the U.S. leads in closed, proprietary AI models like OpenAI's, Chinese companies now dominate the leaderboards for open-source models. Because they are cheaper and easier to deploy, these Chinese models are seeing rapid global uptake, challenging the U.S.'s perceived lead in AI through wider diffusion and application.

Related Insights

While the US pursues cutting-edge AGI, China is competing aggressively on cost at the application layer. By making LLM tokens and energy dramatically cheaper (e.g., $1.10 vs. $10+ per million tokens), China is fostering mass adoption and rapid commercialization. This strategy aims to win the practical, economic side of the AI race, even with less powerful models.

China's promotion of open-weight models is a strategic maneuver to exert global influence. By controlling the underlying models that answer questions about history, borders, and values, a nation can shape global narratives and project soft power, much like Hollywood did for the U.S.

China is pursuing a low-cost, open-source AI model, similar to Android's market strategy. This contrasts with the US's expensive, high-performance "iPhone" approach. This accessibility and cost-effectiveness could allow Chinese AI to dominate the global market, especially in developing nations.

A nation's advantage is its "intelligent capital stock": its total GPU compute power multiplied by the quality of its AI models. This explains the US restricting GPU sales to China, which counters by excelling in open-source models to close the gap.

An emerging geopolitical threat is China weaponizing AI by flooding the market with cheap, efficient large language models (LLMs). This strategy, mirroring their historical dumping of steel, could collapse the pricing power of Western AI giants, disrupting the US economy's primary growth engine.

A common misconception is that Chinese AI is fully open-source. The reality is they are often "open-weight," meaning training parameters (weights) are shared, but the underlying code and proprietary datasets are not. This provides a competitive advantage by enabling adoption while maintaining some control.

The US-China tech rivalry spans four arenas: creating technology, applying it, installing infrastructure, and self-sufficiency. While the U.S. excels at creating foundational tech like AI frameworks and semiconductors, China is leading in its practical application (e.g., robotics), installing digital infrastructure globally, and achieving resource independence.

Chinese AI models like Kimi achieve dramatic cost reductions through specific architectural choices, not just scale. Using a "mixture of experts" design, they only utilize a fraction of their total parameters for any given task, making them far more efficient to run than the "dense" models common in the West.

The exceptionally low cost of developing and operating AI models in China is forcing a reckoning in the US tech sector. American investors and companies are now questioning the high valuations and expensive operating costs of their domestic AI, creating fear that the US AI boom is a bubble inflated by high costs rather than superior technology.

China is compensating for its deficit in cutting-edge semiconductors by pursuing an asymmetric strategy. It focuses on massive 'superclusters' of less advanced domestic chips and creating hyper-efficient, open-source AI models. This approach prioritizes widespread, low-cost adoption over chasing the absolute peak of performance like the US.