The same cellular mechanism (NMT) hijacked by cancer cells is also exploited by viruses like HIV and coronaviruses for replication. By inhibiting NMT, Zelenorstat could potentially halt viral spread, making it a candidate for future pandemic defense.
Simple cell viability screens fail to identify powerful drug combinations where each component is ineffective on its own. AI can predict these synergies, but only if trained on mechanistic data that reveals how cells rewire their internal pathways in response to a drug.
To overcome the historical issue of oncolytic viruses being sequestered by the liver, Accession re-engineers a human virus so it cannot infect any human cells. Only after this safety step is it re-targeted to infect only cancer cells, ensuring precise delivery and avoiding systemic side effects.
Step Pharma's synthetic lethality approach targets two redundant enzymes in the same pathway. Deleting one makes cancer cells entirely dependent on the other. This direct dependency is harder for biology to circumvent compared to approaches targeting different, interconnected pathways, creating a "cleaner" kill mechanism.
The NIH's cancellation of mRNA research is a profound strategic error. The technology's key advantage is speed, which is critical not only for future pandemics but also for personalized cancer treatments. These therapies must be developed for individual patients quickly, making mRNA the most promising platform.
Zelenorstat inhibits NMT, an enzyme that attaches a "GPS tag" to proteins, guiding them within the cell. By blocking this process, it renders key cancer-driving proteins useless, effectively confusing the cancer's operating system rather than using brute-force poison like chemotherapy.
The efficacy of some established drugs, like the chemotherapy oxaliplatin, may be due to an unknown mechanism: they partition into and disrupt cellular condensates. This reframes our understanding of drug action and could explain why certain drugs are more effective in some cancers than others.
Cancer should be viewed not just as rogue cells, but as a complex system with its own supply chains and communication infrastructure. This perspective shift justifies novel therapies like Zelenorstat, which aim to dismantle this entire operating system by cutting its power source.
Accession's second product is a bispecific antibody that binds to all cancer cells. While this would be dangerously toxic if delivered systemically, their targeted virus delivery system ensures it is only produced inside the tumor. This strategy makes previously "undruggable" therapeutic concepts viable.
Agencies like BARDA are funding drugs that treat severe symptoms common to various pathogens, such as acute respiratory distress syndrome (ARDS). This strategy aims to have pre-approved, pathogen-agnostic treatments available immediately during a new pandemic to reduce mortality while vaccines are developed.
"China Speed," once synonymous with rapid antibody development, now extends to RNA silencing technologies. A surge in homegrown RNAi companies and programs, with dozens unpartnered, indicates China's biotech ecosystem is rapidly diversifying into new, complex therapeutic modalities beyond its established strengths.