The efficacy of some established drugs, like the chemotherapy oxaliplatin, may be due to an unknown mechanism: they partition into and disrupt cellular condensates. This reframes our understanding of drug action and could explain why certain drugs are more effective in some cancers than others.
Simple cell viability screens fail to identify powerful drug combinations where each component is ineffective on its own. AI can predict these synergies, but only if trained on mechanistic data that reveals how cells rewire their internal pathways in response to a drug.
The drug exhibits a multimodal mechanism. It not only reverses chemoresistance and halts tumor growth but also 'turns cold tumors hot' by forcing cancer cells to display markers that make them visible to the immune system. This dual action of direct attack and immune activation creates a powerful synergistic effect.
Instead of targeting individual gene mutations in diseases like ALS, condensate science focuses on shared cellular structures where genetic risks converge. This approach creates a broader therapeutic target, potentially treating more patients with diverse genetic profiles.
A major challenge in phenotypic drug screening is determining a compound's mechanism of action. AI models can analyze the complex visual data of cellular condensates after drug treatment, extracting maximal information to understand how the drug is actually working inside the cell.
Cells aren't just a random soup or rigidly defined organelles. Condensates form a 'mesoscale' organizational layer. Unlike fixed protein complexes, they have flexible component ratios and are governed by looser rules, providing a dynamic way to concentrate molecules for specific functions.
The same cancer-driving mutation behaves differently depending on the cell's internal "wiring." For example, a drug targeting a mutation works in melanoma but induces resistance in colorectal cancer due to a bypass pathway. This cellular context is why genetic data alone is insufficient.
Actuate’s drug was designed to be highly lipophilic (fat-soluble) to cross the blood-brain barrier for CNS treatment. This same property proved crucial for its success in oncology, as it allows the drug to easily penetrate cancer cell membranes and reach the nucleus.
Unlike older antibody-drug conjugates (ADCs), newer agents are designed so their chemotherapy payload can diffuse out of the target cell and kill nearby tumor cells that may not even express the target antigen. This "bystander effect" significantly enhances their anti-tumor activity.
To target MYC, Dewpoint uses phenotypic screens that monitor the entire MYC condensate. This approach is mechanism-agnostic, capable of identifying compounds that work via previously attempted methods (e.g., disrupting binding) as well as novel ones like dissolving the condensate itself.
Cellcuity's drug is effective in breast cancer patients without PIK3CA mutations (wild type). This challenges the dominant precision medicine model that requires a specific genetic marker, showing that a pathway's aberrant activity can be a sufficient therapeutic target on its own.