Simple cell viability screens fail to identify powerful drug combinations where each component is ineffective on its own. AI can predict these synergies, but only if trained on mechanistic data that reveals how cells rewire their internal pathways in response to a drug.

Related Insights

AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.

The relationship between a multi-specific antibody's design and its function is often non-intuitive. LabGenius's ML platform excels by exploring this complex "fitness landscape" without human bias, identifying high-performing molecules that a rational designer would deem too unconventional or "crazy."

Step Pharma's synthetic lethality approach targets two redundant enzymes in the same pathway. Deleting one makes cancer cells entirely dependent on the other. This direct dependency is harder for biology to circumvent compared to approaches targeting different, interconnected pathways, creating a "cleaner" kill mechanism.

The primary barrier to AI in drug discovery is the lack of large, high-quality training datasets. The emergence of federated learning platforms, which protect raw data while collectively training models, is a critical and undersung development for advancing the field.

An individual tumor can have hundreds of unique mutations, making it impossible to predict treatment response from a single genetic marker. This molecular chaos necessitates functional tests that measure a drug's actual effect on the patient's cells to determine the best therapy.

While AI can accelerate the ideation phase of drug discovery, the primary bottleneck remains the slow, expensive, and human-dependent clinical trial process. We are already "drowning in good ideas," so generating more with AI doesn't solve the fundamental constraint of testing them.

Despite AI's power, 90% of drugs fail in clinical trials. John Jumper argues the bottleneck isn't finding molecules that target proteins, but our fundamental lack of understanding of disease causality, like with Alzheimer's, which is a biology problem, not a technology one.

The progress of AI in predicting cancer treatment is stalled not by algorithms, but by the data used to train them. Relying solely on static genetic data is insufficient. The critical missing piece is functional, contextual data showing how patient cells actually respond to drugs.

The bottleneck for AI in drug development isn't the sophistication of the models but the absence of large-scale, high-quality biological data sets. Without comprehensive data on how drugs interact within complex human systems, even the best AI models cannot make accurate predictions.

The AI-discovered antibiotic Halicin showed no evolved resistance in E. coli after 30 days. This is likely because it hits multiple protein targets simultaneously, a complex property that AI is well-suited to identify and which makes it exponentially harder for bacteria to develop resistance.

Standard Assays Miss Synergistic Drug Combos; Mechanistic Data Is Required | RiffOn