CZI's goal to cure all diseases by 2100 is seen as unambitious by AI experts but overly ambitious by biologists. This difference in perspective forces biologists to define barriers and AI researchers to understand data complexities, fostering a more credible, grounded approach to innovation.
The endgame for CZI's work is hyper-personalized, "N of one" medicine. Instead of the current empirical approach (e.g., trying different antidepressants for months), AI models will simulate an individual's unique biology to predict which specific therapy will work, eliminating guesswork and patient suffering.
The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.
CZI’s mission to cure all diseases is seen as unambitious by AI experts but overly ambitious by biologists. This productive tension forces biologists to pinpoint concrete obstacles and AI experts to grasp data complexity, accelerating the overall pace of innovation.
Today's AI-first drug companies must bridge the gap between separate AI and biology experts. The future competitive advantage will belong to a new generation of scientists who are trained from the start to be fluent in both disciplines, eliminating the "accent" of learning one as a second language.
Despite AI's power, 90% of drugs fail in clinical trials. John Jumper argues the bottleneck isn't finding molecules that target proteins, but our fundamental lack of understanding of disease causality, like with Alzheimer's, which is a biology problem, not a technology one.
CZI set an audacious goal to cure all disease. When scientists deemed it impossible, CZI's follow-up question, "Why not?" revealed the true bottleneck wasn't funding individual projects, but a systemic lack of shared tools, which then became their core focus.
CZI targets a 10-15 year time horizon for its major scientific initiatives. This is a strategic sweet spot, similar to a venture-backed company's lifecycle, which is long enough for ambitious goals but concrete enough for a team to see a project through.
CZI operates at the intersection of two cultures: biologists who saw their goals as "crazy ambitious" and AI experts who saw them as "boring" and inevitable. Their strategy is to actively merge these fields to create breakthroughs that neither could achieve alone.
CZI's strategy creates a "frontier biology lab" to co-develop advanced data collection techniques alongside its "frontier AI lab." This integrated approach ensures biological data is generated specifically to train and ground next-generation AI models, moving beyond using whatever data happens to be available.
Bob Nelsen believes the industry overestimates AI's short-term impact and underestimates its long-term potential. He predicts that once a critical data threshold is met, AI models won't just accelerate drug discovery but will fundamentally invent new biology, creating a sudden, paradigm-shifting moment.