Despite AI's power, 90% of drugs fail in clinical trials. John Jumper argues the bottleneck isn't finding molecules that target proteins, but our fundamental lack of understanding of disease causality, like with Alzheimer's, which is a biology problem, not a technology one.
AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.
Powerful AI models for biology exist, but the industry lacks a breakthrough user interface—a "ChatGPT for science"—that makes them accessible, trustworthy, and integrated into wet lab scientists' workflows. This adoption and translation problem is the biggest hurdle, not the raw capability of the AI models themselves.
A classical, bottom-up simulation of a cell is infeasible, according to John Jumper. He sees the more practical path forward as fusing specialized models like AlphaFold with the broad reasoning of LLMs to create hybrid systems that understand biology.
CZI’s mission to cure all diseases is seen as unambitious by AI experts but overly ambitious by biologists. This productive tension forces biologists to pinpoint concrete obstacles and AI experts to grasp data complexity, accelerating the overall pace of innovation.
In high-stakes fields like pharma, AI's ability to generate more ideas (e.g., drug targets) is less valuable than its ability to aid in decision-making. Physical constraints on experimentation mean you can't test everything. The real need is for tools that help humans evaluate, prioritize, and gain conviction on a few key bets.
While AI can accelerate the ideation phase of drug discovery, the primary bottleneck remains the slow, expensive, and human-dependent clinical trial process. We are already "drowning in good ideas," so generating more with AI doesn't solve the fundamental constraint of testing them.
The bottleneck for AI in drug development isn't the sophistication of the models but the absence of large-scale, high-quality biological data sets. Without comprehensive data on how drugs interact within complex human systems, even the best AI models cannot make accurate predictions.
Profluent CEO Ali Madani frames the history of medicine (like penicillin) as one of random discovery—finding useful molecules in nature. His company uses AI language models to move beyond this "caveman-like" approach. By designing novel proteins from scratch, they are shifting the paradigm from finding a needle in a haystack to engineering the exact needle required.
Following the success of AlphaFold in predicting protein structures, Demis Hassabis says DeepMind's next grand challenge is creating a full AI simulation of a working cell. This 'virtual cell' would allow researchers to test hypotheses about drugs and diseases millions of times faster than in a physical lab.
The founder of AI and robotics firm Medra argues that scientific progress is not limited by a lack of ideas or AI-generated hypotheses. Instead, the critical constraint is the physical capacity to test these ideas and generate high-quality data to train better AI models.